K - The Unique MST
Given a connected undirected graph, tell if its minimum spanning tree is unique.
Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties:
1. V' = V.
2. T is connected and acyclic.
Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.
Input
The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.
Output
For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.
Sample Input
2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2
Sample Output
3
Not Unique!
题意:找最小生成树,判断是否唯一,唯一输出最小权值和,不是的话输出Not Unique!
题解:找到最小生成树,然后找到次小生成树,看是否相等。
AC代码:
#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<cmath>
using namespace std;
int n,t,m;
int sum;
int rns;
const int maxn = 105;
const int inf = 0x3f3f3f3f;
int a[maxn][maxn];
int vis[maxn],length[maxn];
int mix[maxn][maxn];
int pre[maxn];
int use[maxn][maxn];
void prim()
{
for(int i=1;i<=n;i++)
{
length[i]=a[1][i];
vis[i]=0;
pre[i]=1;
}
for(int i=1;i<=n;i++)
{
int u=inf;
int v;
for(int j=1;j<=n;j++)
{
if(vis[j]==0&&u>length[j])
{
u=length[j];
v=j;
}
}
vis[v]=1;
use[v][pre[v]]=use[pre[v]][v]=1;
sum+=length[v];
for(int j=1;j<=n;j++)
{
if(v!=j&&vis[j])
{
mix[v][j]=mix[j][v]=max(mix[j][pre[v]],length[v]);
}
if(vis[j]==0&&length[j]>a[v][j])
{
length[j]=a[v][j];
pre[j]=v;
}
}
}
}
void second_MST()
{
rns=inf;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i==j)continue;
if(use[i][j]==0)rns=min(rns,sum-mix[i][j]+a[i][j]);
}
}
}
int main()
{
cin>>t;
while(t--)
{
sum=0;
cin>>n>>m;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(i==j)a[i][j]=0;
else a[i][j]=inf;
use[i][j]=0;
}
for(int j=1;j<=m;j++)
{
int x,y,z;
cin>>x>>y>>z;
a[x][y]=a[y][x]=z;
}
prim();
second_MST();
if(rns==sum)cout<<"Not Unique!"<<endl;
else cout<<sum<<endl;
}
return 0;
}
本文介绍了一种算法,用于判断给定的加权无向图是否存在唯一的最小生成树(MST)。通过Prim算法寻找最小生成树,并进一步确定次小生成树来验证MST的唯一性。
1447

被折叠的 条评论
为什么被折叠?



