LeetCode--No.121--Best Time to Buy and Sell Stock

本文介绍了一种寻找股票交易中最大利润的算法。该算法能在O(n)的时间复杂度内找到给定价格数组中能够获得的最大利润,同时考虑了买入价格必须小于卖出价格的实际约束条件。

Say you have an array for which the ith element is the price of a given stock on day i.

If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.

Example 1:

Input: [7, 1, 5, 3, 6, 4]
Output: 5

max. difference = 6-1 = 5 (not 7-1 = 6, as selling price needs to be larger than buying price)

Example 2:

Input: [7, 6, 4, 3, 1]
Output: 0

In this case, no transaction is done, i.e. max profit = 0.

方法:

时间复杂度O(n^2)的就略过了,比较简单。

方法二:

时间复杂度O(n),空间复杂度O(n), 其实和求子数列的最大和,几乎是一样的。

public class Solution {
    public int maxProfit(int[] prices) {
        int max = 0;
        int min = 0;
        if (prices.length <= 1)
            return 0;
        else if(prices.length == 2){
            if (prices[1] - prices[0] > 0)
                return prices[1] - prices[0];
            else
                return 0;
        }
        int[] sum = new int[prices.length - 1];
        sum[0] = prices[1] - prices[0];
        int maxs = sum[0];
        for(int i = 1; i < prices.length-1; i++){
            sum[i] = Math.max(prices[i+1] - prices[i], sum[i-1] + prices[i+1] - prices[i]);
            maxs = Math.max(maxs, sum[i]);
        }
        if (maxs < 0)
            return 0;
        else
            return maxs;
    }
}


为什么就不能简单一点:?!!

感觉受到了一万点伤害。

我这个智商真的还要继续刷下去么?

public class Solution {
    public int maxProfit(int[] prices) {
        if (prices.length == 0)
            return 0;
        int maxPrice = prices[prices.length-1];
        int ans = 0;
        for(int i = prices.length - 1; i>= 0; i--){
            maxPrice = Math.max(maxPrice, prices[i]);
            ans = Math.max(ans, maxPrice - prices[i]);
        }
        return ans;
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值