Pyspark DataFrame 转成 rdd 互转

Python
# -*- coding: utf-8 -*- from __future__ import print_function from pyspark.sql import SparkSession from pyspark.sql import Row if __name__ == "__main__": # 初始化SparkSession spark = SparkSession .builder .appName("RDD_and_DataFrame") .config("spark.some.config.option", "some-value") .getOrCreate() sc = spark.sparkContext lines = sc.textFile("employee.txt") parts = lines.map(lambda l: l.split(",")) employee = parts.map(lambda p: Row(name=p[0], salary=int(p[1]))) #RDD转换成DataFrame employee_temp = spark.createDataFrame(employee) #显示DataFrame数据 employee_temp.show() #创建视图 employee_temp.createOrReplaceTempView("employee") #过滤数据 employee_result = spark.sql("SELECT name,salary FROM employee WHERE salary >= 14000 AND salary <= 20000") # DataFrame转换成RDD result = employee_result.rdd.map(lambda p: "name: " + p.name + " salary: " + str(p.salary)).collect() #打印RDD数据 for n in result: print(n)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# -*- coding: utf-8 -*-
from __future__ import print_function
from pyspark . sql import SparkSession
from pyspark . sql import Row
 
if __name__ == "__main__" :
     # 初始化SparkSession
     spark = SparkSession
         . builder
         . appName ( "RDD_and_DataFrame" )
         . config ( "spark.some.config.option" , "some-value" )
         . getOrCreate ( )
 
     sc = spark . sparkContext
 
     lines = sc . textFile ( "employee.txt" )
     parts = lines . map ( lambda l : l . split ( "," ) )
     employee = parts . map ( lambda p : Row ( name = p [ 0 ] , salary = int ( p [ 1 ] ) ) )
 
     #RDD转换成DataFrame
     employee_temp = spark . createDataFrame ( employee )
 
     #显示DataFrame数据
     employee_temp . show ( )
 
     #创建视图
     employee_temp . createOrReplaceTempView ( "employee" )
     #过滤数据
     employee_result = spark . sql ( "SELECT name,salary FROM employee WHERE salary >= 14000 AND salary <= 20000" )
 
     # DataFrame转换成RDD
     result = employee_result . rdd . map ( lambda p : "name: " + p . name + "  salary: " + str ( p . salary ) ) . collect ( )
 
     #打印RDD数据
     for n in result :
         print ( n )
 
 

DataFrame转换成RDD

df.rdd就直接 转换成 rdd的操作

Python
result = employee_result.rdd.map(lambda p: "name: " + p.name + " salary: " + str(p.salary)).collect()
1
2
result = employee_result . rdd . map ( lambda p : "name: " + p . name + "  salary: " + str ( p . salary ) ) . collect ( )
 



  • zeropython 微信公众号 5868037 QQ号 5868037@qq.com QQ邮箱
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值