Subversion快速入门教程

本文提供了一套快速搭建Subversion服务器的方法,包括软件下载、安装、版本库建立、用户权限配置等步骤,并通过实例演示了如何进行初始化导入及基本客户端操作。

如何快速建立Subversion服务器,并且在项目中使用起来,这是大家最关心的问题,与CVS相比,Subversion有更多的选择,也更加的容易,几个命令就可以建立一套服务器环境,可以使用起来,这里配套有动画教程
本文是使用Subversion最快速的教程,在最短的时间里帮助您建立起一套可用的服务器环境,只需略加调整就可以应用到实际项目当中。

本教程分为以下几个部分,为了说明简单,教程是在windows下使用的方式,以方便资源有限的项目使用。在UNIX环境下,只是安装方式不同,命令执行并无太大区别。

  • 软件下载
  • 服务器和客户端安装
  • 建立版本库(Repository
  • 配置用户和权限
  • 运行独立服务器
  • 初始化导入
  • 基本客户端操作

1,软件下载

下载Subversion服务器程序。

官方网站的下载二进制安装文件,来到二进制包下载部分,找到 Windows NT, 2000, XP and 2003部分,然后选择Apache 2.0 或者 Apache 2.2,这样我们可以看到许多下载的内容,目前可以下载Setup-Subversion-1.5.3.msi

下载SubversionWindows客户端TortoiseSVN

TortoiseSVN是扩展Windows Shell的一套工具,可以看作Windows资源管理器的插件,安装之后Windows就可以识别Subversion的工作目录。
官方网站是
TortoiseSVN ,下载方式和前面的svn服务器类似,在Download页面的我们可以选择下载的版本,目前的最高稳定版本的安装文件为TortoiseSVN-1.5.5.14361-win32-svn-1.5.4.msi

2,服务器和客户端安装

服务器安装,直接运行Setup-Subversion-1.5.3.msi ,根据提示安装即可,这样我们就有了一套服务器可以运行的环境。

安装TortoiseSVN,同样直接运行TortoiseSVN-1.5.5.14361-win32-svn-1.5.4.msi按照提示安装即可,不过最后完成后会提示是否重启,其实重启只是使svn工作拷贝在windows中的特殊样式生效,与所有的实际功能无关,这里为了立刻看到好的效果,还是重新启动机器。
 

3,建立版本库(Repository

运行Subversion服务器需要首先要建立一个版本库(Repository),可以看作服务器上存放数据的数据库,在安装了Subversion服务器之后,可以直接运行,如:

svnadmin create E:\svndemo\repository

就会在目录E:\svndemo\repository下创建一个版本库。

我们也可以使用TortoiseSVN图形化的完成这一步:
在目录E:\svndemo\repository"右键->TortoiseSVN->Create Repository here...“ 然后可以选择版本库模式, 这里使用默认即可, 然后就创建了一系列目录和文件。


4
,配置用户和权限

来到E:\svndemo\repository\conf目录,修改svnserve.conf
# [general]
# password-db = passwd
改为:

[general]
password-db = passwd

然后修改同目录的passwd文件,去掉下面三行的注释:
# [users]
# harry = harryssecret
# sally = sallyssecret
最后变成:

[users]
harry = harryssecret
sally = sallyssecret

 passwd文件中,“=”前的字符就是用户名,后面的就是密码。还要注意“[users]”前面的注释“#”一定要删除掉。

5,运行独立服务器

在任意目录下运行:
svnserve -d -r E:\svndemo\repository

D可用deamon,r可用root,两者可以互换

我们的服务器程序就已经启动了。注意不要关闭命令行窗口,关闭窗口也会把svnserve停止。

6,初始化导入

来到我们想要导入的项目根目录,在这个例子里是E:\svndemo\initproject,目录下有一个readme.txt文件:


右键->TortoiseSVN->Import...
URL of repository输入
“svn://localhost/trunk”
Import Message中输入你的日志信息

完成之后目录没有任何变化,如果没有报错,数据就已经全部导入到了我们刚才定义的版本库中。

需要注意的是,这一步操作可以完全在另一台安装了TortoiseSVN的主机上进行。例如运行svnserve的主机的IP133.96.121.22,则URL部分输入的内容就是“svn://133.96.121.22/trunk”

7,基本客户端操作

取出版本库到一个工作拷贝: 

来到任意空目录下,在本例中是E:\svndemo\wc1,运行右键->Checkout,在URL of repository中输入svn://localhost/trunk,这样我们就得到了一份工作拷贝。 

 

在工作拷贝中作出修改并提交: 

打开readme.txt,作出修改,然后右键->Commit...,这样我们就把修改提交到了版本库,我们可以运行。

 

察看所作的修改: 

readme.txt上右键->TortoiseSVN->Show Log,这样我们就可以看到我们对这个文件所有的提交。在版本1上右键->Compare with working copy,我们可以比较工作拷贝的文件和版本1的区别。

最后,所有的内容都已经录制为动画文件,大家可以参考。

关于本教程大家有什么意见,可以这里讨论

 

 

根据原作 https://pan.quark.cn/s/459657bcfd45 的源码改编 Classic-ML-Methods-Algo 引言 建立这个项目,是为了梳理和总结传统机器学习(Machine Learning)方法(methods)或者算法(algo),和各位同仁相互学习交流. 现在的深度学习本质上来自于传统的神经网络模型,很大程度上是传统机器学习的延续,同时也在不少时候需要结合传统方法来实现. 任何机器学习方法基本的流程结构都是通用的;使用的评价方法也基本通用;使用的一些数学知识也是通用的. 本文在梳理传统机器学习方法算法的同时也会顺便补充这些流程,数学上的知识以供参考. 机器学习 机器学习是人工智能(Artificial Intelligence)的一个分支,也是实现人工智能最重要的手段.区别于传统的基于规则(rule-based)的算法,机器学习可以从数据中获取知识,从而实现规定的任务[Ian Goodfellow and Yoshua Bengio and Aaron Courville的Deep Learning].这些知识可以分为四种: 总结(summarization) 预测(prediction) 估计(estimation) 假想验证(hypothesis testing) 机器学习主要关心的是预测[Varian在Big Data : New Tricks for Econometrics],预测的可以是连续性的输出变量,分类,聚类或者物品之间的有趣关联. 机器学习分类 根据数据配置(setting,是否有标签,可以是连续的也可以是离散的)和任务目标,我们可以将机器学习方法分为四种: 无监督(unsupervised) 训练数据没有给定...
本系统采用微信小程序作为前端交互界面,结合Spring Boot与Vue.js框架实现后端服务及管理后台的构建,形成一套完整的电子商务解决方案。该系统架构支持单一商户独立运营,亦兼容多商户入驻的平台模式,具备高度的灵活性与扩展性。 在技术实现上,后端以Java语言为核心,依托Spring Boot框架提供稳定的业务逻辑处理与数据接口服务;管理后台采用Vue.js进行开发,实现了直观高效的操作界面;前端微信小程序则为用户提供了便捷的移动端购物体验。整套系统各模块间紧密协作,功能链路完整闭环,已通过严格测试与优化,符合商业应用的标准要求。 系统设计注重业务场景的全面覆盖,不仅包含商品展示、交易流程、订单处理等核心电商功能,还集成了会员管理、营销工具、数据统计等辅助模块,能够满足不同规模商户的日常运营需求。其多店铺支持机制允许平台方对入驻商户进行统一管理,同时保障各店铺在品牌展示、商品销售及客户服务方面的独立运作空间。 该解决方案强调代码结构的规范性与可维护性,遵循企业级开发标准,确保了系统的长期稳定运行与后续功能迭代的可行性。整体而言,这是一套技术选型成熟、架构清晰、功能完备且可直接投入商用的电商平台系统。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
考虑实时市场联动的电力零售商鲁棒定价策略(Matlab代码实现)内容概要:本文围绕“考虑实时市场联动的电力零售商鲁棒定价策略”展开,提出了一种基于鲁棒优化的电力零售定价模型,旨在应对电力市场中可再生能源出力不确定性及实时市场价格波动带来的风险。通过构建两阶段鲁棒优化模型,结合风光出力场景生成与负荷聚类分析,充分考虑了电力零售商在日前市场与实时市场之间的互动关系,实现了在不确定环境下的最优定价与购电决策。文中采用Matlab进行仿真验证,展示了所提策略在提升零售商利润稳定性与风险抵御能力方面的有效性。; 适合人群:具备一定电力系统基础知识和优化理论背景,熟悉Matlab编程,从事电力市场、能源管理、智能电网等相关领域研究的研究生、科研人员及行业工程师。; 使用场景及目标:①用于电力零售商在不确定性环境下制定稳健的定价与购电策略;②为电力市场风险管理、需求响应建模及新能源集成提供技术支持与仿真工具;③支撑学术研究中对鲁棒优化、场景生成、主从博弈等方法的应用与复现。; 阅读建议:建议结合文中提供的Matlab代码进行实践操作,重点关注模型构建逻辑、场景生成方法与求解算法实现,宜配合YALMIP等优化工具包进行调试与扩展,以深入理解鲁棒优化在电力市场决策中的实际应用。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值