BL10A9030 Laboratory Course in Electrical Engineering

Java Python BL10A9030 Laboratory Course in Electrical Engineering

Three Phase System

Laboratory Instructions

Topic featured in following courses:

Basics of Electric Engineering Electric Circuits

20.12.2022

1.   DESCRIPTION

In this assignment we study the basic properties of three phase electrical systems, such as line and phase voltages, the phase shift of voltage and current, asymmetry and wye/delta configured loads. The pre-lab task contains a personal quiz and group preparations for the actual laboratory measurements, including the design of the circuit diagrams and measure- ment sheets. In the laboratory we will make measurements for wye and delta configured loads and measure the currents in an asymmetric system. Finally, we will assess the results and compare how different configurations (wye/delta) affect the three-phase system, how asymmetric load affects the system and how the results differ from calculated ones.

The pre-lab task (both the quiz and the group task) needs to be completed and returned to Moodle before the laboratory session. The laboratory task takes place in room 6318. After the session, a short analysis paper is prepared.

1.1 Learning goals

After completing the laboratory assignment, the student is able to:

•   Explain and understand the concepts of line and phase voltages

•   Configure a delta and a wye connection

•   Explain how a delta and a wye configuration affect the currents and power ofa circuit

•   Use a wattmeter to measure three phase power

•   Explain the terms symmetrical and asymmetrical load

1.2 Grading

•   Pre-lab task

o Quiz 15 %

o Group laboratory work preparation 20 % (group grading)

•   Laboratory work: 30 % (group grading)

•   Analysis: 35 % (group grading)

Assessment is done using the assessment matrices posted on Moodle. The pre-lab quiz as- sessment is described in the quiz.

2.   PRE-LAB TASK

The pre-lab task consists of drawing circuit diagrams. For example, they can be made with ProfiCAD, or using a browser-based tool called diagrams.net (previously known as draw.io). Diagrams.net provides suitable stencils for components. They can be accessed by selecting More Shapes from the lower left corner, and then selecting Electrical. The circuit diagrams can be made with any tool you find suitable, as long as the finished diagrams are clear.

2.1    Three-phase power measurement in wye configuration

Design a circuit diagram with a three-phase voltage source, three-phase load resistor in wye configuration and power measurement from the circuit using three power meters (watt me- ters).

Design a circuit diagram for making the same measurement using only two power meters (line voltages and phase currents are measured, more information can be found by searching the internet for two wattmeter method. Check the tips in chapter 4.1.)

2.2    Three-phase power measurement in delta configuration

Design a circuit diagram with a three-phase voltage source, three-phase load resistor in delta configuration and power measurements for the circuit using three wattmeters.

2.3 Measurement sheet

Create measurement sheets for the measurements described in chap BL10A9030 Laboratory Course in Electrical Engineering ters 3.2-3.4.

3.   MEASUREMENTS

3.1 Required eqiupment

1 pc.    3-phase AC power source (SM1003)

3 pcs   Variable resistor 100 Ω npcs   Multimeter

3 pcs   Wattmeter Metrahit 29S

3.2    Three-phase power measurement in wye configuration

Build the circuit you designed in the pre-lab task (chapter 2.1). Adjust the three-phase load resistor to 100 Ω and the phase voltage of the three-phase supply to 60 V. Connect the neutral conductor to the neutral point and measure the current of the neutral conductor. Document the active power, voltage, current and power factor of each line and the current of the neutral connector to the measurement sheet. What is the power factor stated by the wattmeter?

Next, measure the three-phase power using only two wattmeters. What does the wattmeter state as the power factor now? Document the active power, current, voltage and power factor from the wattmeters to the measurement sheet.

3.3    Three-phase power measurement in delta configuration

Build the circuit you designed in the pre-lab task (chapter 2.2). Alter the circuit so that the load resistor is connected in delta configuration. The voltage source and the load resistor values are unchanged. Measure the three-phase power using three wattmeters. Document the active power, voltage, current and power factor of each line to the measurement sheet.

3.4 Asymmetric load

Connect three variable resistors in wye configuration and add the neutral conductor to the neutral point of the circuit. Add a current meter to each line and the neutral conductor. With a low phase voltage (approximately 15 V): Test what happens to the currents of the lines and the neutral conductor when there is an imbalance in the resistance of the load in each line. Start from an approximately symmetrical situation, and then alter the resistance values of the variable resistors. Be careful not to exceed the maximum rated current of each resis- tor!

Document the current for each phase, when they all have noticeably different loads. Next, remove the neutral conductor and document the current values again.

4.   ANALYSIS OF RESULTS

The analysis of the results consists of answering the questions presented in the assignment instruction document. Including, making possible calculations, presentation of results in an illustrative form. and verbal assessment (for example, observations or conclusions made from figures). Assess whether the results are reasonable. If some of the results are completely incorrect or inadequate, state this and try to find the reason for the anomaly.

4.1    Three-phase power in wye and delta configured loads

Calculate the total active power in measurement 3.2 when using three and two wattmeters, and the total active power in measurement 3.3. Compare your calculations to the measured values.

Tips:

-    Using three wattmeters, the three-phase power is obtained by adding together the power from each line

P = √3√3Uv Iv cos(φ) = √3UP Iv cos(φ) = 3Uv Iv cos(φ) = P1  + P2  + P3

-    Using two wattmeters, the 30 degree phase difference between the line voltage and the current has to betaken into account

P = UP Iv cos(φ − 30°) + UP Iv cos(φ + 30°) = P1  + P2

4.2 Asymmetric load

Present and analyze the results of the measurement in chapter 3.4. Calculate the current of the neutral conductor based on the phase currents and compare how the calculated value differs from the measured one         

<think>好的,我现在需要解决用户的问题:了解在ARM Trusted Firmware或U-Boot上下文中,BL2_IN_XIP_MEM的定义和作用。用户之前询问了AArch64启动时关闭栈对齐检查的原因,现在转向了另一个启动阶段相关的定义。 首先,我需要确定BL2_IN_XIP_MEM的具体上下文。用户提到了U-Boot或ARM Trusted Firmware(ATF),但根据常见的启动流程,BL2通常是ATF中的阶段,而U-Boot可能作为后续的BL33存在。因此,BL2_IN_XIP_MEM更可能出现在ATF的配置中。 接下来,回忆ATF的启动流程:BL1(Boot ROM或ATF的第一阶段)加载BL2到内存中执行。XIP(Execute In Place)意味着直接从存储介质执行代码,而无需复制到RAM。这可能涉及NOR Flash等支持XIP的存储设备。 然后,查找相关文档或源码。在ATF的编译配置中,可能会有BL2_IN_XIP_MEM的编译选项,用于指示BL2是否在XIP内存中运行。例如,当BL2存储在XIP设备(如Flash)时,启用此选项可以避免将BL2复制到RAM,节省时间和内存空间。 作用方面,启用BL2_IN_XIP_MEM可能影响BL2的加载方式。通常BL1需要将BL2加载到RAM中执行,但若BL2本身在XIP内存中,BL1可能直接跳转到该地址执行,无需复制。这需要存储介质支持XIP,并且代码位置固定。 还需要考虑内存映射的问题。XIP区域的地址需要在BL1的可访问范围内,并且需要正确的初始化(如Flash控制器配置),以确保指令能正确读取。 此外,用户之前的问题涉及启动阶段的栈对齐检查,这可能与内存初始化和代码执行环境有关。BL2作为启动流程的一部分,其加载方式会影响内存的使用和对齐要求。例如,如果BL2在XIP中运行,可能不需要移动代码,但需要确保代码的地址对齐和访问权限正确。 可能存在的挑战是区分不同项目中的实现差异,如ATF与U-Boot。需要确认BL2_IN_XIP_MEM是否特定于某个平台或配置。例如,某些ARM平台的ATF可能有特定处理,而U-Boot可能使用不同的机制。 最后,总结BL2_IN_XIP_MEM的定义和作用:在支持XIP的系统中,该配置允许BL2直接从存储介质执行,优化启动时间和内存使用。但需硬件支持,并正确配置地址和访问权限。</think>在ARM Trusted Firmware(ATF)启动流程中,`BL2_IN_XIP_MEM` 是与**可执行位置无关内存(XIP, Execute-In-Place)**相关的关键配置选项,其定义和作用如下: --- ### 一、定义与编译配置 #### 1. 核心定义 - **BL2_IN_XIP_MEM**:布尔型编译标志,用于声明BL2镜像是否已预先加载到支持XIP(直接执行)的存储器中(如NOR Flash)。当启用时(`BL2_IN_XIP_MEM=1`),BL1无需将BL2复制到RAM,直接跳转到其存储地址执行[^1]。 #### 2. 典型配置场景 在ARM Trusted Firmware的`make`编译命令中显式指定: ```bash make PLAT=<platform> BL2_IN_XIP_MEM=1 # 启用XIP模式 ``` 或在平台特定Makefile中默认设置: ```makefile # plat/<vendor>/<platform>/platform.mk BL2_IN_XIP_MEM := 1 ``` --- ### 二、技术作用分析 #### 1. **加速启动流程** - **传统模式**:BL1需将BL2从存储介质(如eMMC)拷贝到RAM再执行,耗时公式: $$ T_{\text{copy}} = \frac{\text{BL2\_SIZE}}{\text{Mem\_BW}} + \text{Mem\_Latency} $$ - **XIP模式**:省去拷贝步骤,直接执行BL2,启动时间优化为: $$ T_{\text{xip}} = \text{Flash\_Access\_Latency} $$ #### 2. **减少内存占用** - 避免BL2镜像占用RAM空间,保留更多内存给后续阶段(BL31/BL32/BL33)[^2]。 #### 3. **硬件依赖条件** 需要满足以下硬件特性: - 存储器支持XIP(如NOR Flash) - 存储器的地址映射在启动时已正确配置 - 存储器访问时序满足CPU取指要求 --- ### 三、实现机制(以ATF为例) #### 1. BL1阶段处理逻辑 ```c // bl1/bl1_main.c void bl1_main() { if (BL2_IN_XIP_MEM) { // 直接跳转到BL2的XIP地址 bl1_run_bl2_in_xip(bl2_xip_base); } else { // 传统方式:拷贝BL2到RAM并跳转 bl1_load_bl2(); } } ``` #### 2. 地址映射要求 XIP存储区域需在BL1的地址空间内,典型配置示例: ```c // plat/<vendor>/<platform>/include/platform_def.h #define BL2_BASE_XIP 0x08000000 // NOR Flash的物理基地址 #define BL2_LIMIT_XIP (BL2_BASE_XIP + BL2_SIZE) ``` #### 3. 安全校验 即使启用XIP,仍需执行完整性验证: ```c if (verify_bl2_signature(bl2_xip_base) != OK) { panic("BL2 XIP image corrupt!"); } ``` --- ### 四、与U-Boot的关联性 在U-Boot作为BL33的启动链中,`BL2_IN_XIP_MEM` 主要影响ATF内部流程,但U-Boot自身也可能使用类似机制: - **SPL(Secondary Program Loader)**:U-Boot SPL支持从XIP存储器加载U-Boot Proper - 配置示例(U-Boot): ```makefile CONFIG_SPL_XIP_LOAD = y ``` --- ### 五、典型应用场景 | 场景 | 优势 | 限制条件 | |---------------------|-----------------------------|----------------------------| | 嵌入式设备小内存系统 | 减少RAM消耗 | 需NOR Flash支持XIP | | 快速启动需求 | 省去拷贝时间 | Flash读取速度需足够快 | | 安全启动链验证 | 避免镜像篡改后的执行 | 需硬件加密引擎支持实时校验 | --- ### 六、调试与问题排查 若XIP配置错误,常见现象及解决方法: 1. **CPU取指失败(Hard Fault)**: - 检查Flash控制器初始化代码[^3] - 验证`BL2_BASE_XIP`是否与硬件设计一致 2. **性能下降**: - 测量Flash访问时序,调整等待周期 - 启用指令缓存(MMU/Cache初始化后) ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值