【Codeforces Round 324 (Div 2)B】【容斥】Kolya and Tanya 环上n个3元组至少有一组和不为6

本文探讨了一个关于3n个节点的环形结构中,每个节点上的数可取1至3,寻找满足特定条件的组合数量。通过对组合总数的计算及非法组合的排除,最终求得满足条件的组合数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B. Kolya and Tanya
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Kolya loves putting gnomes at the circle table and giving them coins, and Tanya loves studying triplets of gnomes, sitting in the vertexes of an equilateral triangle.

More formally, there are 3n gnomes sitting in a circle. Each gnome can have from 1 to 3 coins. Let's number the places in the order they occur in the circle by numbers from 0 to 3n - 1, let the gnome sitting on the i-th place have ai coins. If there is an integer i (0 ≤ i < n) such that ai + ai + n + ai + 2n ≠ 6, then Tanya is satisfied.

Count the number of ways to choose ai so that Tanya is satisfied. As there can be many ways of distributing coins, print the remainder of this number modulo 109 + 7. Two ways, a and b, are considered distinct if there is index i (0 ≤ i < 3n), such that ai ≠ bi (that is, some gnome got different number of coins in these two ways).

Input

A single line contains number n (1 ≤ n ≤ 105) — the number of the gnomes divided by three.

Output

Print a single number — the remainder of the number of variants of distributing coins that satisfy Tanya modulo 109 + 7.

Sample test(s)
input
1
output
20
input
2
output
680
Note

20 ways for n = 1 (gnome with index 0 sits on the top of the triangle, gnome 1 on the right vertex, gnome 2 on the left vertex):


#include<stdio.h>
#include<string.h>
#include<ctype.h>
#include<math.h>
#include<iostream>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);}
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1,class T2>inline void gmax(T1 &a,T2 b){if(b>a)a=b;}
template <class T1,class T2>inline void gmin(T1 &a,T2 b){if(b<a)a=b;}
const int N=0,M=0,Z=1e9+7,ms63=1061109567;
int casenum,casei;
LL mul(LL x,int p)
{
	LL y=1;
	while(p)
	{
		if(p&1)y=y*x%Z;
		x=x*x%Z;
		p>>=1;
	}
	return y;
}
int main()
{
	int n;
	while(~scanf("%d",&n))
	{
		printf("%lld\n",(mul(27,n)+Z-mul	(7,n))%Z);
	}
	return 0;
}
/*
【题意】
有3n(1<=n<=1e5)个点,每个点的数可以取(1,2,3)编号从0到3n-1.构成一个环。
问你在所有可能的环中有多少个环,使得至少存在一个p(0<=p<n),满足a[p]+a[n+p]+a[n+n+p]!=6

【类型】
简单容斥

【分析】
本来环的总是一共是3^3n。
对于单一的三元组,认定其非法的条件是a[p]+a[n+p]+a[n+n+p]=6,即(123)全排列6种+(222)一种
于是非法的环,每个三个都要是非法的,于是数量便是7^n。
这样答案就算出来了,是27^n-7^n

*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值