HDU - 5637

Transform

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 918    Accepted Submission(s): 354


Problem Description

A list of n integers are given. For an integer x you can do the following operations:

+ let the binary representation of x be b31b30...b0¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯, you can flip one of the bits.
+ let y be an integer in the list, you can change x to x⊕y, where ⊕ means bitwise exclusive or operation.

There are several integer pairs (S,T). For each pair, you need to answer the minimum operations needed to change S to T.

 Input

There are multiple test cases. The first line of input contains an integer T (T≤20), indicating the number of test cases. For each test case:

The first line contains two integer n and m (1≤n≤15,1≤m≤105) -- the number of integers given and the number of queries. The next line contains n integers a1,a2,...,an (1≤ai≤105), separated by a space.

In the next m lines, each contains two integers si and ti (1≤si,ti≤105), denoting a query.

 Output

For each test cases, output an integer S=(∑i=1mi⋅zi) mod (109+7), where zi is the answer for i-th query.

 

Sample Input

1

3 3

1 2 3

3 4

1 2

3 9

 Sample Output

10

Hint

$3 \to 4$ (2 operations): $3 \to 7 \to 4$

$1 \to 2$ (1 operation): $1 \oplus 3 = 2$

$3 \to 9$ (2 operations): $3 \to 1 \to 9$

题意:

给出n个数的序列a,对于一个整数x,有两种操作: 
1.改变x二进制中任一位 
2.将x变为x^a[i]
m次查询,每次查询输入两个整数x和y,问x最少经过多少次操作可以变成y 

思路:因为求s^(t[1]^t[2]^...t[j])=t。那么转化成(t[1]^t[2]^...t[j])=s^t,那么就直接求0到s^t最少步数。

#include <set>
#include <map>
#include <deque>
#include <stack>
#include <queue>
#include <time.h>
#include <vector>
#include <string>
#include <math.h>
#include <cstring>
#include <cstdlib>
#include <stdio.h>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define PI acos(-1)
#define ll long long
#define inf 0x3f3f3f3f
#define ull unsigned long long
using namespace std;
const long long mod=1e9+7;
struct node
{
    int x,step;
};
int dis[1000001];
int a[20];
void bfs(int n)
{
    memset(dis,-1,sizeof(dis));
    dis[0] = 0;
    queue<node>q;
    node cur,nex;
    cur.x=cur.step=0;
    q.push(cur);
    int x=(1<<17);
    while(!q.empty())
    {
        cur=q.front();
        q.pop();
        for(int i=0;i<n;i++)
        {
            nex.x=cur.x^a[i];
            nex.step=cur.step+1;
            if(nex.x<x&& dis[nex.x]==-1)
            {
                dis[nex.x]=nex.step;
                q.push(nex);
            }
        }
        for(int j=0;j<17;j++)
        {
            nex.x=cur.x^(1<<j);
            nex.step = cur.step+1;
            if(nex.x<x&&dis[nex.x]==-1)
            {
                dis[nex.x]=nex.step;
                q.push(nex);
            }
        }
    }
}
int main()
{
    int T, n, m, s, t;
    scanf("%d", &T);
    while (T--)
    {
        scanf("%d%d", &n, &m);
        for(int i=0;i<n;i++) scanf("%d",&a[i]);
        bfs(n);
        ll ans=0;
        for(int i=1;i<= m;i++)
        {
            scanf("%d%d",&s,&t);
            ans=(ans+(long long)i*dis[s^t])% mod;
        }
        printf("%lld\n",ans);
    }

    return 0;
}

 

内容概要:该PPT详细介绍了企业架构设计的方法论,涵盖业务架构、数据架构、应用架构和技术架构四大核心模块。首先分析了企业架构现状,包括业务、数据、应用和技术四大架构的内容和关系,明确了企业架构设计的重要性。接着,阐述了新版企业架构总体框架(CSG-EAF 2.0)的形成过程,强调其融合了传统架构设计(TOGAF)和领域驱动设计(DDD)的优势,以适应数字化转型需求。业务架构部分通过梳理企业级和专业级价值流,细化业务能力、流程和对象,确保业务战略的有效落地。数据架构部分则遵循五大原则,确保数据的准确、一致和高效使用。应用架构方面,提出了分层解耦和服务化的设计原则,以提高灵活性和响应速度。最后,技术架构部分围绕技术框架、组件、平台和部署节点进行了详细设计,确保技术架构的稳定性和扩展性。 适合人群:适用于具有一定企业架构设计经验的IT架构师、项目经理和业务分析师,特别是那些希望深入了解如何将企业架构设计与数字化转型相结合的专业人士。 使用场景及目标:①帮助企业和组织梳理业务流程,优化业务能力,实现战略目标;②指导数据管理和应用开发,确保数据的一致性和应用的高效性;③为技术选型和系统部署提供科学依据,确保技术架构的稳定性和扩展性。 阅读建议:此资源内容详尽,涵盖企业架构设计的各个方面。建议读者在学习过程中,结合实际案例进行理解和实践,重点关注各架构模块之间的关联和协同,以便更好地应用于实际工作中。
资 源 简 介 独立分量分析(Independent Component Analysis,简称ICA)是近二十年来逐渐发展起来的一种盲信号分离方法。它是一种统计方法,其目的是从由传感器收集到的混合信号中分离相互独立的源信号,使得这些分离出来的源信号之间尽可能独立。它在语音识别、电信和医学信号处理等信号处理方面有着广泛的应用,目前已成为盲信号处理,人工神经网络等研究领域中的一个研究热点。本文简要的阐述了ICA的发展、应用和现状,详细地论述了ICA的原理及实现过程,系统地介绍了目前几种主要ICA算法以及它们之间的内在联系, 详 情 说 明 独立分量分析(Independent Component Analysis,简称ICA)是近二十年来逐渐发展起来的一种盲信号分离方法。它是一种统计方法,其目的是从由传感器收集到的混合信号中分离相互独立的源信号,使得这些分离出来的源信号之间尽可能独立。它在语音识别、电信和医学信号处理等信号处理方面有着广泛的应用,目前已成为盲信号处理,人工神经网络等研究领域中的一个研究热点。 本文简要的阐述了ICA的发展、应用和现状,详细地论述了ICA的原理及实现过程,系统地介绍了目前几种主要ICA算法以及它们之间的内在联系,在此基础上重点分析了一种快速ICA实现算法一FastICA。物质的非线性荧光谱信号可以看成是由多个相互独立的源信号组合成的混合信号,而这些独立的源信号可以看成是光谱的特征信号。为了更好的了解光谱信号的特征,本文利用独立分量分析的思想和方法,提出了利用FastICA算法提取光谱信号的特征的方案,并进行了详细的仿真实验。 此外,我们还进行了进一步的研究,探索了其他可能的ICA应用领域,如音乐信号处理、图像处理以及金融数据分析等。通过在这些领域中的实验和应用,我们发现ICA在提取信号特征、降噪和信号分离等方面具有广泛的潜力和应用前景。
### 关于HDU - 6609 的题目解析 由于当前未提供具体关于 HDU - 6609 题目的详细描述,以下是基于一般算法竞赛题型可能涉及的内容进行推测和解答。 #### 可能的题目背景 假设该题目属于动态规划类问题(类似于多重背包问题),其核心在于优化资源分配或路径选择。此类问题通常会给出一组物品及其属性(如重量、价值等)以及约束条件(如容量限制)。目标是最优地选取某些物品使得满足特定的目标函数[^2]。 #### 动态转移方程设计 如果此题确实是一个变种的背包问题,则可以采用如下状态定义方法: 设 `dp[i][j]` 表示前 i 种物品,在某种条件下达到 j 值时的最大收益或者最小代价。对于每一种新加入考虑范围内的物体 k ,更新规则可能是这样的形式: ```python for i in range(n): for s in range(V, w[k]-1, -1): dp[s] = max(dp[s], dp[s-w[k]] + v[k]) ``` 这里需要注意边界情况处理以及初始化设置合理值来保证计算准确性。 另外还有一种可能性就是它涉及到组合数学方面知识或者是图论最短路等相关知识点。如果是后者的话那么就需要构建相应的邻接表表示图形结构并通过Dijkstra/Bellman-Ford/Floyd-Warshall等经典算法求解两点间距离等问题了[^4]。 最后按照输出格式要求打印结果字符串"Case #X: Y"[^3]。 #### 示例代码片段 下面展示了一个简单的伪代码框架用于解决上述提到类型的DP问题: ```python def solve(): t=int(input()) res=[] cas=1 while(t>0): n,k=list(map(int,input().split())) # Initialize your data structures here ans=find_min_unhappiness() # Implement function find_min_unhappiness() res.append(f'Case #{cas}: {round(ans)}') cas+=1 t-=1 print("\n".join(res)) solve() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值