Range Sum Query 2D - Immutable
题目:
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).
The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.
Example:
Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
]
sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12
Note:
- You may assume that the matrix does not change.
- There are many calls to sumRegion function.
- You may assume that row1 ≤ row2 and col1 ≤ col2.
题目大意:给一个二维矩阵,求出左上角x1,y1到右下角x2,y2坐标内所有数的和。
题目有提示,这个方法会被调用很多次,普通方法超时不多说。。。所以用动态规划。
一个二维数组sum[r][c]表示r行,c列到0行,0列的数的和。
则sum[r,c] = matrix[r,c]+sum[r-1,c]+sum[r,c-1]-sum[r-1,c-1];
求sumRegion时
sumRegion(row1,col1,row2,col2) =
sum[row1-1,col1-1]+sum[row2,col2]-sum[row1-1,col2]-sum[row2,col1-1]
所以完整代码如下:
public class NumMatrix {
int[,] sum;
public NumMatrix(int[,] matrix)
{
if (matrix.GetLength(0) == 0 || matrix.GetLength(1) == 0 || matrix == null) return;
sum = new int[matrix.GetLength(0),matrix.GetLength(1)];
sum[0,0] = 0;
for (int r = 0; r < matrix.GetLength(0); r++)
{
for (int c = 0; c < matrix.GetLength(1); c++)
{
if (r == 0 && c == 0) sum[r, c] = matrix[r, c];
else if (r == 0) sum[r,c]=matrix[r,c]+sum[r,c-1];
else if (c == 0) sum[r,c] = matrix[r,c] + sum[r-1,c];
else sum[r,c] = matrix[r,c]+sum[r-1,c]+sum[r,c-1]-sum[r-1,c-1];
}
}
}
public int SumRegion(int row1, int col1, int row2, int col2)
{
if (row1 == 0 && col1 == 0) return sum[row2, col2];
if (row1 == 0) return sum[row2, col2] - sum[row2, col1 - 1];
if (col1 == 0) return sum[row2,col2] - sum[row1-1,col2];
return sum[row1-1,col1-1]+sum[row2,col2]-sum[row1-1,col2]-sum[row2,col1-1];
}
}
这是一篇关于LeetCode第304题的解析,题目要求在不变的二维矩阵中,找到指定矩形区域内的元素之和。通过动态规划的方法,可以预先计算每个位置到矩阵边缘的元素总和,从而高效地回答多次区间和查询。具体实现中,使用公式更新二维数组sum,并提供了一个高效的sumRegion函数来计算指定矩形区域的和。
377

被折叠的 条评论
为什么被折叠?



