Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 29928 | Accepted: 10832 |
Description
While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .
To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Input
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2.. M+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2.. M+ W+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.
Output
Sample Input
2 3 3 1 1 2 2 1 3 4 2 3 1 3 1 3 3 2 1 1 2 3 2 3 4 3 1 8
Sample Output
NO YES
Hint
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
Source
typedef struct node
{
int number; //被指向的节点
int cost; //路径的花费
struct node* next; //下一个节点的指针
}node;
node a[1000]; //开始的节点
void charu(int x,int y,int cos) //将一条由x指向y的花费cos的路径插入邻接表
{
int i,j;
node* p=(node*)malloc(sizeof(node));
p->cost=cos;
p->number=y;
p->next=a[x].next;
a[x].next=p;
}
但是,这种方式要针对每一个节点进行遍历,即使剪枝,时间复杂度太高,超时。
bool Bellman-Ford(G,w,s) //图G ,边集 函数 w ,s为源点
for each vertex v ∈ V(G) //初始化 1阶段
d[v] ←+∞;
d[s] ←0; //1阶段结束
for(int i=1;i<|v|;i++) //2阶段开始,双重循环。
for each edge(u,v) ∈E(G) //边集数组要用到,穷举每条边。
if(d[v]> d[u]+ w(u,v))//松弛判断
d[v]=d[u]+w(u,v); //松弛操作2阶段结束
for each edge(u,v) ∈E(G)
if(d[v]> d[u]+ w(u,v))
return false;
return true;
如果在某一遍迭代中,松弛操作未执行,说明该遍迭代所有的边都没有被松弛。至此后,边集中所有的边都不需要再被松弛,从而可以提前结束迭代过程。优化的措施就非常简单。
优化后的算法在处理有负权回路的测试数据时,由于每次都会有边被松弛,因而不可能提前终止外层循环。这对应了最坏情况,其时间复杂度仍旧为O(VE)。
使用初步优化的bellman_ford算法求解该问题:
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define MAXN 10005
int f,n,m,w,s,e,t,result,enumber;
typedef struct node
{
int x,y,cost;
}node;
node a[5300];
int d[505];
void init()
{
int i,j,k;
scanf("%d%d%d",&n,&m,&w);
k=0;
for(i=0;i<m;i++)
{
scanf("%d%d%d",&s,&e,&t);
a[k+1].y=a[k].x=s;
a[k+1].x=a[k].y=e;
a[k+1].cost=a[k].cost=t;
k+=2;
}
for(i=0;i<w;i++)
{
scanf("%d%d%d",&s,&e,&t);
a[k].x=s;
a[k].y=e;
a[k].cost=-1*t;
k++;
}
enumber=k;
result=0;
for(i=0;i<=n;i++)
d[i]=MAXN;
}
void bellman_ford()
{
int i,j;
int p;
d[1]=0;
for(i=0;i<n-1;i++)
{
p=1;
for(j=0;j<enumber;j++)
{
if(d[a[j].x]+a[j].cost<d[a[j].y])
{
d[a[j].y]=d[a[j].x]+a[j].cost;
p=0;
}
}
if(p)
break;
}
for(j=0;j<enumber&&!result;j++)
if(d[a[j].x]+a[j].cost<d[a[j].y])
result=1;
}
int main()
{
int i,j;
scanf("%d",&f);
while(f--)
{
init();
bellman_ford();
if(result)
printf("YES\n");
else
printf("NO\n");
}
return 0;
}