2024 (ICPC) Jiangxi Provincial Contest(VP补题记录)
已ac 8/12,赛时7题,赛后1题。
文章目录
A(签到中的签到,pass)
C(简单思维)
要么 n 要么 n-1.
FastIO 已省略
def solve():
n,s = MI()
a = LI()
print1(n if sum(a) == s else n-1)
# for _ in range(I()):
solve()
G
给你一个长度不超过 1 0 14 10^{14} 1014 的11进制数,判断是不是5的倍数,由于 1 1 i m o d 10 = 1 11^i \mod 10 = 1 11imod10=1,所以所有位累加即可。
mod = 5
dic = {
str(i):i for i in range(10)}
dic['A'] = 10
def solve():
n = I()
ans = 0
for i in range(n):
x,y = MS()
ans += int(x) * dic[y]
ans %= 5
print('Yes' if ans % 5 == 0 else 'No')
for _ in range(I()):
solve()
# print(set([pow(11,i,10) for i in range(100000)]))
J(按题意模拟即可)
se = set()
for c in "psm":
se.add('1'+c)
se.add('9'+c)
for i in range(1,8):
se.add(str(i) + 'z')
def solve():
s = S()
dic = {
}
for i in range(0,28,2):
ts = s[i:i+2]
dic[ts] = dic.get(ts,0)+1
flag = 1
for v in dic.values():
if v != 2:
flag = 0
break
if flag:
print1("7 Pairs")
return
if se == set(dic.keys()): print1("Thirteen Orphans")
else: print1("Otherwise")
for _ in range(I()):
solve()
K
显然有m-1种分叉情况,所以 a n s = 2 m − 1 ans = 2^{m-1} ans=2m−1 % m o d mod mod .
mod = 998244353
def solve():
m = I()
print1(pow(2, m-1, mod))
solve()
H(卷积加权和反过来看)
考虑把卷积核 K K K 加权到输入矩阵

最低0.47元/天 解锁文章
487





