1004. Counting Leaves (30)

本文介绍了一种算法,用于计算家族树结构中每个层级的叶节点数量。通过深度优先搜索(DFS)和广度优先搜索(BFS)两种方法实现,并详细解释了如何使用孩子兄弟表示法来存储树结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1004. Counting Leaves (30)

  A family hierarchy is usually presented by a pedigree tree. Your job is to count those family members who have no child.
Input

  Each input file contains one test case. Each case starts with a line containing 0 < N < 100, the number of nodes in a tree, and M (< N), the number of non-leaf nodes. Then M lines follow, each in the format:

ID K ID[1] ID[2] … ID[K]
where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID’s of its children. For the sake of simplicity, let us fix the root ID to be 01.

Output

For each test case, you are supposed to count those family members who have no child for every seniority level starting from the root. The numbers must be printed in a line, separated by a space, and there must be no extra space at the end of each line.

The sample case represents a tree with only 2 nodes, where 01 is the root and 02 is its only child. Hence on the root 01 level, there is 0 leaf node; and on the next level, there is 1 leaf node. Then we should output “0 1” in a line.

Sample Input
2 1
01 1 02
Sample Output
0 1

DFS解法

#include <iostream>
#include <cstdio>
#include <vector>
#include <queue>
using namespace std;
int n,m;
int* result;
int max_h;
struct Node{/*孩子兄弟表示法*/
    int firstChild=-1;
    vector<int> brother;
};
void dfs(Node* tree,int id,int deep){
    max_h=deep>max_h?deep:max_h;
    //判断当前的id是不是叶子节点
    if(tree[id].firstChild==-1)
        result[deep]++;
    for(int i=0;i<tree[id].brother.size();i++){
        dfs(tree,tree[id].brother[i],deep);
    }
    if(tree[id].firstChild!=-1)
        dfs(tree,tree[id].firstChild,deep+1);
}
int main()
{
    //freopen("in.txt","r",stdin);
    cin>>n>>m;
    Node* tree=new Node[100+10];
    result=new int[n]{0};
    for(int i=0;i<m;i++){
        int id,k,id_1;
        cin>>id>>k;
        cin>>id_1;
        tree[id].firstChild=id_1;
        for(int j=1;j<k;j++){
            int b;
            cin>>b;
            tree[id_1].brother.emplace_back(b);
        }
    }
    dfs(tree,1,0);
    for(int i=0;i<max_h;i++){
        cout<<result[i]<<" ";
    }
    cout<<result[max_h];
    return 0;
}

采用孩子兄弟来存储,也可以用邻接表存储。要注意,树的高度要用变量存储,不能直接认为是m

BFS解法

#include <iostream>
#include <cstdio>
#include <vector>
#include <queue>
using namespace std;
int n,m;
int* result;
int max_h;
int* h;//记录节点所在的层次
struct Node{/*孩子兄弟表示法*/
    int firstChild=-1;
    vector<int> brother;
};
/*void dfs(Node* tree,int id,int deep){
    max_h=deep>max_h?deep:max_h;
    //判断当前的id是不是叶子节点
    if(tree[id].firstChild==-1)
        result[deep]++;
    for(int i=0;i<tree[id].brother.size();i++){
        dfs(tree,tree[id].brother[i],deep);
    }
    if(tree[id].firstChild!=-1)
        dfs(tree,tree[id].firstChild,deep+1);
}*/
void bfs(Node* tree){
    max_h=0;
    queue<int> q;
    q.push(1);
    while(!q.empty()){
        int id=q.front();
        q.pop();
        max_h=h[id]>max_h?h[id]:max_h;
        if(tree[id].firstChild==-1){//是叶子节点
            result[h[id]]++;
            continue;
        }
        //更新当前节点所有孩子节点的层次
        h[tree[id].firstChild]=h[id]+1;
        q.push(tree[id].firstChild);
        for(int i:tree[tree[id].firstChild].brother){
            h[i]=h[id]+1;
            q.push(i);
        }
    }
}
int main()
{
    //freopen("in.txt","r",stdin);
    cin>>n>>m;
    Node* tree=new Node[100+10];
    result=new int[n]{0};
    h=new int[n+1]{0};
    for(int i=0;i<m;i++){
        int id,k,id_1;
        cin>>id>>k;
        cin>>id_1;
        tree[id].firstChild=id_1;
        for(int j=1;j<k;j++){
            int b;
            cin>>b;
            tree[id_1].brother.emplace_back(b);
        }
    }
    //dfs(tree,1,0);
    bfs(tree);
    for(int i=0;i<max_h;i++){
        cout<<result[i]<<" ";
    }
    cout<<result[max_h];
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值