module constants
implicit none
! 物理常数
real, parameter :: pi = 3.141592653589793
real, parameter :: R_univ = 8.314462618 ! 通用气体常数 [J/(mol·K)]
real, parameter :: R_air = 287.0 ! 空气气体常数 [J/(kg·K)]
real, parameter :: k_B = 1.380649e-23 ! 玻尔兹曼常数 [J/K]
real, parameter :: N_A = 6.02214076e23 ! 阿伏伽德罗常数 [1/mol]
! 水物性参数
real, parameter :: M_H2O = 0.018015 ! 水的摩尔质量 [kg/mol]
real, parameter :: rho_l = 1000.0 ! 液态水密度 [kg/m³]
real, parameter :: sigma_H2O = 0.072 ! 表面张力 [N/m]
real, parameter :: h_fg = 2.257e6 ! 汽化潜热 [J/kg]
real, parameter :: cp_v = 1410.0 ! 水蒸气比热 [J/(kg·K)]
real, parameter :: k_v = 0.026 ! 水蒸气导热系数 [W/(m·K)]
! 发动机参数
real, parameter :: De = 0.2 ! 喷口直径 [m]
real, parameter :: T0 = 1000.0 ! 喷口温度 [K]
real, parameter :: P0 = 50000.0 ! 喷口压力 [Pa]
real, parameter :: U0 = 2000.0 ! 喷口速度 [m/s]
real, parameter :: X_H2O = 0.22 ! 水蒸气摩尔分数
! 数值参数
integer, parameter :: nx = 50 ! 轴向网格数
integer, parameter :: ny = 30 ! 径向网格数
integer, parameter :: nt = 1000 ! 时间步数
real, parameter :: dt = 1e-6 ! 时间步长 [s]
real, parameter :: L_domain = 5.0 * De ! 轴向计算域长度 [m]
real, parameter :: R_domain = 2.0 * De ! 径向计算域半径 [m]
! 组分参数
real, parameter :: X_CO2 = 0.16, X_CO = 0.15, X_N2 = 0.35, X_O2 = 0.12
end module constants
program condensation_2d
use constants
implicit none
! 场变量定义 (二维数组)
real :: x(nx, ny), y(nx, ny), dx, dy
real :: T_g(nx, ny), P_g(nx, ny), Ux(nx, ny), Uy(nx, ny), rho_g(nx, ny)
real :: N_d(nx, ny), Y_d(nx, ny), r_d(nx, ny) ! 液滴数密度、质量分数、半径
real :: m_v(nx, ny), J_nuc(nx, ny), dr_dt(nx, ny) ! 凝结速率、成核率、半径增长率
real :: S(nx, ny), r_c(nx, ny), P_sat(nx, ny) ! 过饱和比、临界半径、饱和蒸气压
! 辅助变量
real :: mu(nx, ny), lambda(nx, ny), rho_old(nx, ny)
integer :: i, j, t_step
! 初始化网格 (轴对称坐标)
dx = L_domain / (nx - 1)
dy = R_domain / (ny - 1)
do j = 1, ny
do i = 1, nx
x(i, j) = (i - 1) * dx
y(i, j) = (j - 1) * dy
end do
end do
! 初始化流场 (喷口边界条件)
call initialize_fields(T_g, P_g, Ux, Uy, rho_g, N_d, Y_d, r_d)
! 时间迭代循环
do t_step = 1, nt
! 保存密度场用于质量守恒
rho_old = rho_g
! 计算物性参数
call calculate_properties(T_g, P_g, mu, lambda)
! 计算过饱和比和临界半径
call calculate_saturation_ratio(P_g, T_g, S, P_sat, r_c)
! 应用Schmidt-Appleman冷凝判据
call apply_condensation_criteria(T_g, rho_g, r_d, S, r_c, J_nuc, dr_dt, m_v)
! 更新液相控制方程
call update_liquid_phase(N_d, Y_d, r_d, J_nuc, m_v, dr_dt, Ux, Uy, dx, dy)
! 更新气相控制方程 (有限差分法)
call update_gas_phase(T_g, P_g, Ux, Uy, rho_g, rho_old, mu, lambda, m_v, dx, dy)
! 输出数据 (每100步输出一次)
if (mod(t_step, 100) == 0) then
call output_data(t_step, x, y, T_g, P_g, N_d, Y_d, r_d)
end if
end do
! 输出最终结果
call output_data(nt, x, y, T_g, P_g, N_d, Y_d, r_d)
contains
! 初始化流场
subroutine initialize_fields(T, P, Ux, Uy, rho, N, Y, r)
real, intent(out) :: T(:, :), P(:, :), Ux(:, :), Uy(:, :), rho(:, :)
real, intent(out) :: N(:, :), Y(:, :), r(:, :)
integer :: i, j, nx, ny
nx = size(T, 1)
ny = size(T, 2)
! 初始化为环境条件
T = 223.15
P = 26500.0
Ux = 0.0
Uy = 0.0
rho = P / (R_air * T)
N = 0.0
Y = 0.0
r = 0.0
! 设置喷口边界条件 (i=1为喷口)
do j = 1, ny
if (y(1, j) <= De/2.0) then
T(1, j) = T0
P(1, j) = P0
Ux(1, j) = U0
Uy(1, j) = 0.0
rho(1, j) = P0 / (R_air * T0)
end if
end do
end subroutine
! 计算物性参数
subroutine calculate_properties(T, P, mu, lambda)
real, intent(in) :: T(:, :), P(:, :)
real, intent(out) :: mu(:, :), lambda(:, :)
integer :: i, j, nx, ny
nx = size(T, 1)
ny = size(T, 2)
! 简化计算: 动力粘度 (Sutherland公式近似)
do j = 1, ny
do i = 1, nx
mu(i, j) = 1.716e-5 * (T(i, j)/273.0)**0.7
lambda(i, j) = 0.0241 * (T(i, j)/273.0)**0.7
end do
end do
end subroutine
! 计算饱和比和临界半径
subroutine calculate_saturation_ratio(P, T, S, P_sat, r_c)
real, intent(in) :: P(:, :), T(:, :)
real, intent(out) :: S(:, :), P_sat(:, :), r_c(:, :)
integer :: i, j, nx, ny
nx = size(P, 1)
ny = size(P, 2)
do j = 1, ny
do i = 1, nx
! Wagner方程计算饱和蒸气压 (更精确)
if (T(i, j) > 273.15) then
P_sat(i, j) = 611.0 * exp( -6094.4642/T(i,j) + 21.1249952 - 2.7245552e-2*T(i,j) &
+ 1.6853396e-5*T(i,j)**2 + 2.4575506*log(T(i,j)) )
else
P_sat(i, j) = 611.0 * exp( -6022.7262/T(i,j) + 29.32707 + 1.0613868e-2*T(i,j) &
- 1.3198825e-5*T(i,j)**2 - 0.49382577*log(T(i,j)) )
end if
! 过饱和比
S(i, j) = (X_H2O * P(i, j)) / P_sat(i, j)
! Kelvin-Helmholtz临界半径
if (S(i, j) > 1.0) then
r_c(i, j) = 2.0 * sigma_H2O / (rho_l * (R_univ/M_H2O) * T(i, j) * log(S(i, j)))
else
r_c(i, j) = 1e-9 ! 极小值
end if
end do
end do
end subroutine
! 应用冷凝判据并计算相关参数
subroutine apply_condensation_criteria(T, rho_g, r, S, r_c, J_nuc, dr_dt, m_v)
real, intent(in) :: T(:, :), rho_g(:, :), r(:, :), S(:, :), r_c(:, :)
real, intent(out) :: J_nuc(:, :), dr_dt(:, :), m_v(:, :)
integer :: i, j, nx, ny
nx = size(T, 1)
ny = size(T, 2)
! 成核率
call nucleation_model(T, rho_g, S, r_c, J_nuc)
! 液滴生长率
call droplet_growth_model(T, rho_g, r, r_c, S, dr_dt)
! 凝结质量速率
do j = 1, ny
do i = 1, nx
if (S(i, j) > 1.0 .and. r(i, j) > 0.0) then
m_v(i, j) = J_nuc(i, j) * (4.0 * pi * r_c(i, j)**3 * rho_l / 3.0) &
+ N_d(i, j) * rho_l * 4.0 * pi * r(i, j)**2 * dr_dt(i, j)
else
m_v(i, j) = 0.0
end if
end do
end do
end subroutine
! 成核模型 (经典成核理论)
subroutine nucleation_model(T, rho_g, S, r_c, J_nuc)
real, intent(in) :: T(:, :), rho_g(:, :), S(:, :), r_c(:, :)
real, intent(out) :: J_nuc(:, :)
real :: A, B, DeltaG
integer :: i, j, nx, ny
nx = size(T, 1)
ny = size(T, 2)
do j = 1, ny
do i = 1, nx
if (S(i, j) > 1.0) then
! 吉布斯自由能变化
DeltaG = 4.0 * pi * r_c(i, j)**2 * sigma_H2O / 3.0
! 成核率计算 (经典理论)
A = rho_g(i, j)**2 / rho_l * sqrt(2.0 * sigma_H2O / (pi * M_H2O**3))
B = 4.0 * pi * r_c(i, j)**2 * sigma_H2O / (3.0 * k_B * T(i, j))
J_nuc(i, j) = A * exp(-B)
else
J_nuc(i, j) = 0.0
end if
end do
end do
end subroutine
! Gyarmathy液滴生长模型
subroutine droplet_growth_model(T, rho_g, r, r_c, S, dr_dt)
real, intent(in) :: T(:, :), rho_g(:, :), r(:, :), r_c(:, :), S(:, :)
real, intent(out) :: dr_dt(:, :)
real :: lambda_v, Kn, Pr_v, T_sat
integer :: i, j, nx, ny
nx = size(T, 1)
ny = size(T, 2)
do j = 1, ny
do i = 1, nx
if (S(i, j) > 1.0 .and. r(i, j) > 0.0) then
! 克努森数
Kn = sqrt(pi * M_H2O / (2.0 * R_univ * T(i, j))) / r(i, j)
! 普朗特数 (假设)
Pr_v = 0.9
! Gyarmathy模型 (公式28)
dr_dt(i, j) = lambda_v * (T_sat(T(i, j), P_g(i, j)) - T(i, j)) * (1.0 - r_c(i, j)/r(i, j)) &
/ (rho_l * h_fg * r(i, j) * (1.0 + 3.78*(1.0 - 0.82*Kn)/Pr_v * Kn))
else
dr_dt(i, j) = 0.0
end if
end do
end do
end subroutine
! 辅助函数: 计算饱和温度
real function T_sat(T, P)
real, intent(in) :: T, P
! 简化计算: 使用Clausius-Clapeyron方程
T_sat = 373.15 - (101325.0 - P) * 0.00025
end function
! 更新液相控制方程 (二维轴对称)
subroutine update_liquid_phase(N, Y, r, J_nuc, m_v, dr_dt, Ux, Uy, dx, dy)
real, intent(inout) :: N(:, :), Y(:, :), r(:, :)
real, intent(in) :: J_nuc(:, :), m_v(:, :), dr_dt(:, :)
real, intent(in) :: Ux(:, :), Uy(:, :)
real, intent(in) :: dx, dy
real :: dNdx, dNdy, dYdx, dYdy, conv_N, conv_Y
integer :: i, j, nx, ny
nx = size(N, 1)
ny = size(N, 2)
! 更新液滴数密度和质量分数
do j = 2, ny-1
do i = 2, nx-1
! 对流项 (一阶迎风)
dNdx = (N(i, j) - N(i-1, j)) / dx
dNdy = (N(i, j) - N(i, j-1)) / dy
conv_N = Ux(i, j) * dNdx + Uy(i, j) * dNdy
dYdx = (Y(i, j) - Y(i-1, j)) / dx
dYdy = (Y(i, j) - Y(i, j-1)) / dy
conv_Y = Ux(i, j) * dYdx + Uy(i, j) * dYdy
! 更新方程
N(i, j) = N(i, j) + dt * (J_nuc(i, j) - conv_N)
Y(i, j) = Y(i, j) + dt * (m_v(i, j)/rho_l - conv_Y)
! 更新液滴半径 (考虑生长)
if (N(i, j) > 0.0) then
r(i, j) = r(i, j) + dt * dr_dt(i, j)
! 从质量和数量计算半径 (作为验证)
r(i, j) = max(1e-9, (3.0 * Y(i, j) / (4.0 * pi * rho_l * N(i, j)))**(1.0/3.0)
else
r(i, j) = 0.0
end if
end do
end do
end subroutine
! 更新气相控制方程 (有限差分法)
subroutine update_gas_phase(T, P, Ux, Uy, rho, rho_old, mu, lambda, m_v, dx, dy)
real, intent(inout) :: T(:, :), P(:, :), Ux(:, :), Uy(:, :), rho(:, :)
real, intent(in) :: rho_old(:, :), mu(:, :), lambda(:, :), m_v(:, :)
real, intent(in) :: dx, dy
real :: divU, dudx, dudy, dvdx, dvdy, dTdx, dTdy, dPdx, dPdy
real :: tau_xx, tau_yy, tau_xy, d2udx2, d2udy2, d2vdx2, d2vdy2
real :: conv_rho, conv_u, conv_v, conv_energy
integer :: i, j, nx, ny
nx = size(T, 1)
ny = size(T, 2)
do j = 2, ny-1
do i = 2, nx-1
! === 连续方程 ===
divU = (Ux(i+1, j) - Ux(i-1, j))/(2*dx) + (Uy(i, j+1) - Uy(i, j-1))/(2*dy)
conv_rho = Ux(i, j)*(rho(i+1,j)-rho(i-1,j))/(2*dx) + Uy(i, j)*(rho(i,j+1)-rho(i,j-1))/(2*dy)
rho(i, j) = rho_old(i, j) - dt * (rho(i, j)*divU + conv_rho) - dt * m_v(i, j)
! === 动量方程 (x方向) ===
! 对流项
dudx = (Ux(i+1,j) - Ux(i-1,j))/(2*dx)
dudy = (Ux(i,j+1) - Ux(i,j-1))/(2*dy)
conv_u = Ux(i,j)*dudx + Uy(i,j)*dudy
! 压力梯度
dPdx = (P(i+1,j) - P(i-1,j))/(2*dx)
! 粘性应力
d2udx2 = (Ux(i+1,j) - 2*Ux(i,j) + Ux(i-1,j))/dx**2
d2udy2 = (Ux(i,j+1) - 2*Ux(i,j) + Ux(i,j-1))/dy**2
tau_xx = mu(i,j) * (4.0/3.0*dudx - 2.0/3.0*dudy)
! 动量方程更新
Ux(i,j) = Ux(i,j) + dt * (-conv_u - dPdx/rho(i,j) + (tau_xx + mu(i,j)*(d2udx2 + d2udy2))/rho(i,j))
! === 动量方程 (y方向) ===
! 对流项
dvdx = (Uy(i+1,j) - Uy(i-1,j))/(2*dx)
dvdy = (Uy(i,j+1) - Uy(i,j-1))/(2*dy)
conv_v = Ux(i,j)*dvdx + Uy(i,j)*dvdy
! 压力梯度
dPdy = (P(i,j+1) - P(i,j-1))/(2*dy)
! 粘性应力
d2vdx2 = (Uy(i+1,j) - 2*Uy(i,j) + Uy(i-1,j))/dx**2
d2vdy2 = (Uy(i,j+1) - 2*Uy(i,j) + Uy(i,j-1))/dy**2
tau_yy = mu(i,j) * (4.0/3.0*dvdy - 2.0/3.0*dvdx)
! 动量方程更新
Uy(i,j) = Uy(i,j) + dt * (-conv_v - dPdy/rho(i,j) + (tau_yy + mu(i,j)*(d2vdx2 + d2vdy2))/rho(i,j))
! === 能量方程 ===
! 对流项
dTdx = (T(i+1,j) - T(i-1,j))/(2*dx)
dTdy = (T(i,j+1) - T(i,j-1))/(2*dy)
conv_energy = Ux(i,j)*dTdx + Uy(i,j)*dTdy
! 热传导
d2Tdx2 = (T(i+1,j) - 2*T(i,j) + T(i-1,j))/dx**2
d2Tdy2 = (T(i,j+1) - 2*T(i,j) + T(i,j-1))/dy**2
heat_cond = lambda(i,j) * (d2Tdx2 + d2Tdy2)
! 粘性耗散
dissipation = mu(i,j) * (2.0*((dudx)**2 + (dvdy)**2) + (dudy + dvdx)**2)
! 能量方程更新
T(i,j) = T(i,j) + dt * ( -conv_energy + (heat_cond + dissipation)/(rho(i,j)*cp_v) &
+ m_v(i,j)*h_fg/(rho(i,j)*cp_v) )
! 状态方程
P(i,j) = rho(i,j) * R_air * T(i,j)
end do
end do
! 应用边界条件
call apply_boundary_conditions(T, P, Ux, Uy, rho)
end subroutine
! 应用边界条件
subroutine apply_boundary_conditions(T, P, Ux, Uy, rho)
real, intent(inout) :: T(:, :), P(:, :), Ux(:, :), Uy(:, :), rho(:, :)
integer :: i, j, nx, ny
nx = size(T, 1)
ny = size(T, 2)
! 喷口边界 (i=1)
do j = 1, ny
if (y(1, j) <= De/2.0) then
T(1, j) = T0
P(1, j) = P0
Ux(1, j) = U0
Uy(1, j) = 0.0
rho(1, j) = P0 / (R_air * T0)
else
! 无滑移壁面
Ux(1, j) = 0.0
Uy(1, j) = 0.0
! 绝热壁面
T(1, j) = T(2, j)
end if
end do
! 出口边界 (i=nx) - 零梯度
do j = 1, ny
T(nx, j) = T(nx-1, j)
P(nx, j) = P(nx-1, j)
Ux(nx, j) = Ux(nx-1, j)
Uy(nx, j) = Uy(nx-1, j)
rho(nx, j) = rho(nx-1, j)
end do
! 对称轴 (j=1)
do i = 1, nx
Uy(i, 1) = 0.0
! 对称条件
Ux(i, 1) = Ux(i, 2)
T(i, 1) = T(i, 2)
P(i, 1) = P(i, 2)
rho(i, 1) = rho(i, 2)
end do
! 外边界 (j=ny) - 环境条件
do i = 1, nx
P(i, ny) = 101325.0
T(i, ny) = 300.0
rho(i, ny) = P(i, ny) / (R_air * T(i, ny))
Ux(i, ny) = 0.0
Uy(i, ny) = 0.0
end do
end subroutine
! 数据输出 (二维场)
subroutine output_data(step, x, y, T, P, N, Y, r)
integer, intent(in) :: step
real, intent(in) :: x(:, :), y(:, :), T(:, :), P(:, :), N(:, :), Y(:, :), r(:, :)
character(len=50) :: filename
integer :: i, j, nx, ny
nx = size(T, 1)
ny = size(T, 2)
! 云图数据
write(filename, '(a,i6.6,a)') 'field_data_', step, '.dat'
open(unit=10, file=filename, status='replace')
write(10, *) 'Variables = "x", "y", "T", "P", "N", "Y", "r"'
write(10, *) 'Zone I=', nx, ', J=', ny, ', F=Point'
do j = 1, ny
do i = 1, nx
write(10, '(7e16.7)') x(i, j), y(i, j), T(i, j), P(i, j), N(i, j), Y(i, j), r(i, j)
end do
end do
close(10)
! 中心线数据
if (mod(step, 100) == 0 then
open(unit=11, file='centerline_data.dat', access='append')
do i = 1, nx
write(11, '(7e16.7)') step*dt, x(i, 1), T(i, 1), P(i, 1), N(i, 1), Y(i, 1), r(i, 1)
end do
close(11)
end if
end subroutine
end program condensation_2d根据程序报错修改程序error #6406: Conflicting attributes or multiple declaration of name. [Y]
Compilation Aborted (code 1)
Compilation Aborted (code 1)
error #5082: Syntax error, found END-OF-STATEMENT when expecting one of: :: ) , :
error #5082: Syntax error, found END-OF-STATEMENT when expecting one of: :: ) , :
error #5082: Syntax error, found IDENTIFIER 'THEN' when expecting one of: :: ) , : * <END-OF-STATEMENT> ; . (/ + - ] /) ' ** > PRIVATE / // ...
error #5082: Syntax error, found IDENTIFIER 'THEN' when expecting one of: :: ) , : * <END-OF-STATEMENT> ; . (/ + - ] /) ' ** > PRIVATE / // ...
error #6317: An ENDIF occurred without a corresponding IF THEN or ELSE statement.
error #6317: An ENDIF occurred without a corresponding IF THEN or ELSE statement.
error #6404: This name does not have a type, and must have an explicit type. [D2TDX2]
error #6404: This name does not have a type, and must have an explicit type. [D2TDX2]
error #6404: This name does not have a type, and must have an explicit type. [D2TDY2]
error #6404: This name does not have a type, and must have an explicit type. [D2TDY2]
error #6404: This name does not have a type, and must have an explicit type. [DISSIPATION]
error #6404: This name does not have a type, and must have an explicit type. [DISSIPATION]
error #6404: This name does not have a type, and must have an explicit type. [HEAT_COND]
error #6404: This name does not have a type, and must have an explicit type. [HEAT_COND]
error #6406: Conflicting attributes or multiple declaration of name. [Y]
error #6649: This symbol has multiple INTENT statement/attribute declarations which is not allowed. [Y]
error #6649: This symbol has multiple INTENT statement/attribute declarations which is not allowed. [Y]
最新发布