DP斜率优化

本文详细介绍了如何通过斜率优化技术将动态规划问题从O(n^2)复杂度优化至O(n),以解决具有二次项的二维动态规划问题。以HDU3507为例,通过分析方程dp[i]=dp[j]+M+(sum[i]-sum[j])^2,解释了如何使用斜率优化实现高效求解。包括构建单调队列维护最优解集、利用斜率单调性进行优化等关键步骤。

转载~~

我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i]的形式,其中f[j]中保存了只与j相关的量。这样的DP方程我们可以用单调队列进行优化,从而使得O(n^2)的复杂度降到O(n)。

 

可是并不是所有的方程都可以转化成上面的形式,举个例子:dp[i]=dp[j]+(x[i]-x[j])*(x[i]-x[j])。如果把右边的乘法化开的话,会得到x[i]*x[j]的项。这就没办法使得f[j]里只存在于j相关的量了。于是上面的单调队列优化方法就不好使了。

 

这里学习一种新的优化方法,叫做斜率优化,其实和凸包差不多,下面会解释。

 

举例子说明是最好的!HDU 3507,很适合的一个入门题。http://acm.hdu.edu.cn/showproblem.php?pid=3507

大概题意就是要输出N个数字a[N],输出的时候可以连续连续的输出,每连续输出一串,它的费用是 “这串数字和的平方加上一个常数M”。

我们设dp[i]表示输出到i的时候最少的花费,sum[i]表示从a[1]到a[i]的数字和。于是方程就是:

dp[i]=dp[j]+M+(sum[i]-sum[j])^2;

很显然这个是一个二维的。题目的数字有500000个,不用试了,二维铁定超时了。那我们就来试试斜率优化吧,看看是如何做到从O(n^2)复杂度降到O(n)的。

 

分析:

我们假设k<j<i。如果在j的时候决策要比在k的时候决策好,那么也是就是dp[j]+M+(sum[i]-sum[j])^2<dp[k]+M+(sum[i]-sum[k])^2。(因为是最小花费嘛,所以优就是小于)

两边移项一下,得到:(dp[j]+num[j]^2-(dp[k]+num[k]^2))/(2*(num[j]-num[k]))<sum[i]。我们把dp[j]-num[j]^2看做是yj,把2*num[j]看成是xj。

那么不就是yj-yk/xj-xk<sum[i]么?   左边是不是斜率的表示? 

那么yj-yk/xj-xk<sum[i]说明了什么呢?  我们前面是不是假设j的决策比k的决策要好才得到这个表示的? 如果是的话,那么就说明g[j,k]=yj-jk/xj-xk<sum[i]代表这j的决策比k的决策要更优。

 

关键的来了:现在从左到右,还是设k<j<i,如果g[i,j]<g[j,k],那么j点便永远不可能成为最优解,可以直接将它踢出我们的最优解集。为什么呢?

我们假设g[i,j]<sum[i],那么就是说i点要比j点优,排除j点。

如果g[i,j]>=sum[i],那么j点此时是比i点要更优,但是同时g[j,k]>g[i,j]>sum[i]。这说明还有k点会比j点更优,同样排除j点。

排除多余的点,这便是一种优化!

 

接下来看看如何找最优解。

设k<j<i。

由于我们排除了g[i,j]<g[j,k]的情况,所以整个有效点集呈现一种下凸性质,即k j的斜率要小于j i的斜率。


这样,从左到右,斜率之间就是单调递减的了。当我们的最优解取得在j点的时候,那么k点不可能再取得比j点更优的解了,于是k点也可以排除。换句话说,j点之前的点全部不可能再比j点更优了,可以全部从解集中排除。

 

于是对于这题我们对于斜率优化做法可以总结如下:

1,用一个单调队列来维护解集。

2,假设队列中从头到尾已经有元素a b c。那么当d要入队的时候,我们维护队列的上凸性质,即如果g[d,c]<g[c,b],那么就将c点删除。直到找到g[d,x]>=g[x,y]为止,并将d点加入在该位置中。

3,求解时候,从队头开始,如果已有元素a b c,当i点要求解时,如果g[b,a]<sum[i],那么说明b点比a点更优,a点可以排除,于是a出队。最后dp[i]=getDp(q[head])。

来自

http://www.cnblogs.com/ka200812/archive/2012/08/03/2621345.html


<think>好的,用户想了解斜率优化动态规划的概念及实现方法。首先,我需要回忆一下动态规划的基础知识,特别是优化方法。动态规划通常有递推和记忆化搜索两种实现方式,而斜率优化属于一种高级的优化技巧,用于降低时间复杂度。 用户提到的参考引用中提到,递推的效率比记忆化搜索高,并且很多优化技巧如滚动数组、单调队列、斜率优化都建立在递推上。所以,斜率优化应该属于递推方法的一种扩展。 接下来,我需要明确斜率优化的核心思想。根据已有的知识,斜率优化通常用于处理状态转移方程中的决策变量,通过分析转移方程的数学形式,将其转化为斜率问题,从而利用单调队列或凸包等数据结构来优化决策过程。 例如,当状态转移方程形如$dp[i] = \min\{dp[j] + f(i,j)\}$,其中$f(i,j)$可以分解为与i和j相关的项,可能可以将其转换为斜率的形式。比如,若$f(i,j)=a[i]*b[j]+c[i]+d[j]$,可能将式子整理为关于$b[j]$和$dp[j]+d[j]$的线性表达式,进而比较不同j值的斜率,选择最优的决策点。 需要解释为什么这种方法有效,可能涉及到维护一个下凸包或上凸包,确保每次决策时选取的j是最优的,从而将时间复杂度从O(n^2)降低到O(n)或O(n log n)。 然后,结合用户提供的引用内容,特别是引用[2]提到的QP优化DP结合,可能斜率优化在路径规划中的应用,但用户的问题更关注动态规划中的斜率优化,所以需要专注于算法实现的步骤。 需要给出具体的例子,比如任务安排问题,或者最大子序列问题,来展示斜率优化的应用步骤。例如,经典的任务安排问题,其中状态转移方程可以斜率优化,通过维护一个单调队列来快速找到最优的前驱状态。 在实现步骤方面,应该分步骤解释:问题分析、状态转移方程整理为斜率形式、数据结构的选择(如单调队列)、维护凸包的过程、以及最终的时间复杂度分析。 同时,要注意数学表达式的正确格式,使用$$...$$和$...$,并确保LaTeX语法正确。例如,将状态转移方程写成$$dp[i] = \min_{j<i}\{ dp[j] + (S + T_i)(C_i - C_j) \}$$,然后展开分析。 另外,用户提供的引用中有提到变积分PID和QP优化,虽然这些可能与斜率优化无直接关联,但需要确保不混淆概念,专注于动态规划中的斜率优化部分。 最后,生成相关问题时要围绕斜率优化的应用场景、与其他优化方法的比较、具体实现中的挑战等,帮助用户深入理解。</think>### 斜率优化动态规划详解 #### 概念解析 斜率优化动态规划(Slope Optimization DP)是一种通过**分析状态转移方程的斜率特性**来优化决策过程的方法,可将部分动态规划问题的时间复杂度从$O(n^2)$降至$O(n)$或$O(n \log n)$[^1]。其核心是将状态转移方程转换为**线性关系式**,通过维护**决策点集的凸包**快速筛选最优决策。 #### 算法原理 1. **状态转移方程重构** 设状态转移方程为: $$dp[i] = \min_{j<i}\{ dp[j] + f(i,j) \}$$ 若$f(i,j)$可分解为$A(i) \cdot B(j) + C(i) + D(j)$形式,则方程可改写为: $$dp[i] = C(i) + \min_{j<i}\{ A(i) \cdot B(j) + (dp[j] + D(j)) \}$$ 此时决策变量$j$的优劣可转化为**点$(B(j), dp[j]+D(j))$的斜率比较**。 2. **凸包维护** 通过维护决策点集的**下凸包**(当$A(i)$单调递增)或**上凸包**(当$A(i)$单调递减),使用单调队列/栈快速剔除无效决策点。 #### 实现步骤(以经典任务安排问题为例) **问题描述** 处理$n$个任务,每个任务耗时$t_i$,费用系数$c_i$。目标最小化总费用: $$总费用 = \sum_{i=1}^n (\text{完成时间} \times c_i)$$ **状态转移方程** $$dp[i] = \min_{j<i}\left\{ dp[j] + (S + T_i)(C_i - C_j) \right\}$$ 其中$T_i = \sum_{k=1}^i t_k$, $C_i = \sum_{k=1}^i c_k$,$S$为启动延迟。 **斜率优化过程** 1. **方程变形** 将方程展开为: $$dp[i] = S \cdot C_i + T_i \cdot C_i + \min_{j<i}\{ dp[j] - S \cdot C_j - T_i \cdot C_j \}$$ 令: $$ \begin{cases} k = T_i \\ x_j = C_j \\ y_j = dp[j] - S \cdot C_j \\ \end{cases} $$ 则状态转移简化为: $$dp[i] = (S + T_i)C_i + \min_{j<i}\{ y_j - k x_j \}$$ 2. **决策点筛选** 最优决策点需满足: $$\frac{y_j - y_k}{x_j - x_k} \leq k_i \quad (\text{下凸包条件})$$ 使用单调队列维护凸包,队首即为当前最优决策。 **Python实现示例** ```python def slope_optimization_dp(n, S, t, c): T = [0]*(n+1) # 前缀时间和 C = [0]*(n+1) # 前缀费用和 dp = [0]*(n+1) q = deque([0]) # 单调队列存储决策点索引 for i in range(1, n+1): T[i] = T[i-1] + t[i-1] C[i] = C[i-1] + c[i-1] # 剔除队首非最优决策 while len(q)>=2 and (dp[q[1]] - dp[q[0]]) <= (S + T[i])*(C[q[1]] - C[q[0]]): q.popleft() j = q[0] dp[i] = dp[j] + (S + T[i] - T[j])*(C[i] - C[j]) # 维护下凸包 while len(q)>=2 and (dp[i]-dp[q[-1]])*(C[q[-1]]-C[q[-2]]) <= (dp[q[-1]]-dp[q[-2]])*(C[i]-C[q[-1]]): q.pop() q.append(i) return dp[n] ``` #### 关键优化点 - **时间复杂度**:从$O(n^2)$优化至$O(n)$ - **数据结构**:单调队列实现$O(1)$时间复杂度的决策筛选 - **适用条件**:状态转移方程需满足**决策单调性**且参数满足**斜率单调性** #### 典型应用场景 1. 任务调度问题 2. 最优库存控制 3. 资源分配优化 4. 路径规划中的轨迹平滑(如自动驾驶中的QP优化前处理[^2])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值