KMP算法

KMP算法用于解决字符串匹配问题,时间复杂度O(n+m),m、n分别为目标串和模式串的长度,而一般的匹配BF算法,时间复杂度是O(n*m)。KMP算法在匹配的过程中,减少了目标串和模式串指针的多次回溯,才降低了时间复杂度。

KMP算法本质预处理模式串,求出next[]函数,即模式串中前缀和后缀相等且最长的值。

对于next[]数组的定义如下:

 1) next[j] = -1  j = 0

 2) next[j] = max(k): 0<k<j   P[0...k-1]=P[j-k,j-1]

 3) next[j] = 0  其他

 如:

 P      a    b   a    b   a

 j      0    1   2    3   4

 next    -1   0   0    1   2

  即next[j]=k>0时,表示P[0...k-1]=P[j-k,j-1]

 因此KMP算法的思想就是:在匹配过程称,若发生不匹配的情况,如果next[j]>=0,则目标串的指针i不变,将模式串的指针j移动到next[j]的位置继续进行匹配;若next[j]=-1,则将i右移1位,并将j置0,继续进行比较。

代码实现如下:

int KMPMatch(char *s,char *p)
{
    int next[100];
    int i,j;
    i=0;
    j=0;
    getNext(p,next);
    while(i<strlen(s))
    {
        if(j==-1||s[i]==p[j])
        {
            i++;
            j++;
        }
        else
        {
            j=next[j];       //消除了指针i的回溯
        }
        if(j==strlen(p))
            return i-strlen(p);
    }
    return -1;
}

  因此KMP算法的关键在于求算next[]数组的值,即求算模式串每个位置处的最长后缀与前缀相同的长度, 而求算next[]数组的值有两种思路,第一种思路是用递推的思想去求算,还有一种就是直接去求解。 

1.按照递推的思想:

   根据定义next[0]=-1,假设next[j]=k, 即P[0...k-1]==P[j-k,j-1]

   1)若P[j]==P[k],则有P[0..k]==P[j-k,j],很显然,next[j+1]=next[j]+1=k+1;

   2)若P[j]!=P[k],则可以把其看做模式匹配的问题,即匹配失败的时候,k值如何移动,显然k=next[k]。

void getNext(char *p,int *next)
{
    int j,k;
    next[0]=-1;
    j=0;
    k=-1;
    while(j<strlen(p)-1)
    {
        if(k==-1||p[j]==p[k])    //匹配的情况下,p[j]==p[k]
        {
            j++;
            k++;
            next[j]=k;
        }
        else                   //p[j]!=p[k]
            k=next[k];
    }
}

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值