【HDU2865】构造矩阵+Burnside定理+欧拉函数类似poj2888

本文介绍了一种解决特定玩具染色问题的方法,该问题要求计算在遵循特定规则下使用多种颜色对玩具进行染色的不同方式的数量。文章详细讨论了如何通过数学公式和快速幂运算来高效解决这一挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Birthday Toy

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 466    Accepted Submission(s): 238


Problem Description
AekdyCoin loves toys. It is AekdyCoin’s Birthday today and he gets a special “Toy”.
The “Toy” is in bulk and AekdyCoin has to make one by him. Let’s assume that the “Toy” has N small white beads and one Big bead .If someone want to make a “Toy”, he (or she) must always puts the Big bead in center, and then connect the other N small beads around it by using N sticks with equal length, and then the N small beads must be connected by N sticks with equal length, and it could be seen as a regular polygon. Figure 1 shows a “Toy” with 8 small white beads and one big white bead.

Now AekdyCoin has C kinds of available color, say blue, green, yellow, pink …etc. He wants to color these beads, but he thinks that must be too boring and stupid. So he colors these beads with one role: any adjacent beads couldn’t have same color. Figure 2 shows a legal situation, and Figure 3 shows an illegal situation.


It seems that the “Toy” becomes more interesting for AekdyCoin right now; however, he wants to color the big bead in center. Of course, he should follow the role above.

Now AekdyCoin begins to play with the “Toy”, he always colors the big beads and then the other small beads. He should color under the rule above. After several minutes, AekdyCoin finally makes a perfect “Toy”. Figure 4 shows a situation that is under the color rule.

AekdyCoin now want to know the different method to color the “Toy” whit at most K color. (“Toy” contains N small beads and one big bead.)
But, no, the problem is not so easy .The repetitions that are produced by rotation around the center of the circular necklace are all neglected. Figure 5 shows 8 “Toy”, they are regard as one method.


Now AekdyCoin will give you N and K, he wants you to help him calculate the number of different methods, because the number of method is so huge, so AekdyCoin just want you to tell him the remainder when divided by M.
In this problem, M = 1,000,000,007.

 

Input
The input consists of several test cases.(at least 1000)
Every case has only two integers indicating N, K 
(3<=N<=10^9, 4<=K<=10^9)
 

Output
For each case, you should output a single line indicates the remainder of number of different methods after divided by M.
 

Sample Input
  
3 4 3 5 3 17 162 78923
 

Sample Output
  
8 40 19040 19469065
 

Source

题意:n个小圆组成的正n边形,中间有一个大圆。有木棍相连的两个圆不能有相同的颜色,旋转后相同视为相同的方案,求着色方案数。

设有n个小圆,k种颜色(3<=N<=10^9, 4<=K<=10^9)。

首先,很容易想到从k种选一种给大圆,然后用k-1种颜色对小圆着色。

若不存在相邻圆颜色不同这个限制,则直接Burnside定理。

若存在限制,但是颜色种数很少,可以构造矩阵然后快速幂,得到一个置换使着色不变的着色方案数。

现在颜色种数很多,但是颜色限制较简单,可以考虑公式之类的。

考虑将n个圆的环,等分成t部分,每部分有m个圆。F表示m个圆满足限制的着色方案数。

若m=1,则F=0

若m=2,则F=k*(k-1)

若m=3,则F=k*(k-1)*(k-2)

若m=4,则F=k*(k-1)*[(k-1)+(k-2)*(k-2)]

……

观察到F[n]=F[n-1]*(k-2)+F[n-2]*(k-1)。

那么就可以对该递推式构造矩阵快速幂得到每种分法的方案数。

剩下的同【POJ】2888 Magic Bracelet


#define DeBUG
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <stack>
#include <queue>
#include <string>
#include <set>
#include <sstream>
#include <map>
#include <list>
#include <bitset>
using namespace std ;
#define zero {0}
#define INF 0x3f3f3f3f
#define EPS 1e-6
#define TRUE true
#define FALSE false
typedef long long LL;
const double PI = acos(-1.0);
//#pragma comment(linker, "/STACK:102400000,102400000")
inline int sgn(double x)
{
    return fabs(x) < EPS ? 0 : (x < 0 ? -1 : 1);
}
#define N 100005
#define mod 1000000007
const int MAXN = 2;
struct Matrix
{
    long long mat[MAXN][MAXN];
    void Zero()
    {
        memset(mat, 0, sizeof(mat));
    }
    void Unit()
    {
        memset(mat, 0, sizeof(mat));
        for (int i = 0; i < MAXN; i++)
            mat[i][i] = 1;
    }
    void Build(long long k)
    {
        Zero();
        mat[0][1] = 1;
        mat[0][0] = k - 2;
        mat[1][0] = k - 1;
    }
    void output()
    {
        for(int i=0;i<MAXN;i++)
        {
            for(int j=0;j<MAXN;j++)
            {
                printf("%d ", mat[i][j]);
            }
            printf("\n");
        }
    }
};

Matrix operator*(Matrix &a, Matrix &b)
{
    Matrix tmp;
    tmp.Zero();
    for (int k = 0; k < MAXN; k++)
    {
        for (int i = 0; i < MAXN; i++)
        {
            if (!a.mat[i][k])
                continue;
            for (int j = 0; j < MAXN; j++)
            {
                tmp.mat[i][j] += a.mat[i][k] * b.mat[k][j]%mod;
                if( tmp.mat[i][j]>=mod)
                    tmp.mat[i][j]-=mod;
            }

        }
    }
    return tmp;
}
Matrix operator ^(Matrix a, int k)
{
    Matrix tmp;
    tmp.Unit();
    for (; k; k >>= 1)
    {
        if (k & 1)
            tmp = tmp * a;
        a = a * a;
    }
    return tmp;
}
std::vector<int> prime;
const int  MAXPR = 320000;
bool vispr[MAXPR];
void Init()
{
    prime.clear();
    memset(vispr, 1, sizeof(vispr));
    int sqrtnum = (int)(sqrt((double)MAXPR) + EPS);
    for (int i = 2; i < sqrtnum; i++)
    {
        if (vispr[i])
            for (int j = i * i; j < MAXN; j += i)
                vispr[j] = false;
    }
    for (int i = 2; i < MAXPR; i++)
    {
        if (vispr[i])
            prime.push_back(i);
    }
}
LL Ext_gcd(LL a, LL b, LL &x, LL &y)
{
    if (b == 0)
    {
        x = 1, y = 0;
        return a;
    }
    LL ret = Ext_gcd(b, a % b, y, x);
    y -= a / b * x;
    return ret;
}
LL Inv(LL a, LL m)   ///求逆元a相对于m
{
    LL d, x, y, t = m;
    d = Ext_gcd(a, t, x, y);
    if (d == 1) return (x % t + t) % t;
    return -1;
}
//复杂度根号x
std::vector<int> factor;
void Factor(int n)
{
    factor.clear();
    int i;
    for (i = 1; i * i < n; i++)
    {
        if (n % i == 0)
        {
            factor.push_back(i);
            factor.push_back(n / i);
        }
    }
    if (i * i == n)
        factor.push_back(i);
}
long long F(int n, int k)
{
    long long res;
    if (n == 1)
        res = 0;
    else if (n == 2)
        res = (long long)k * (k - 1);
    else if (n == 3)
        res = (long long)k * (k - 1) % mod * (k - 2);
    else
    {
        Matrix g;
        g.Build(k);
        g = g ^ (n - 3);
        // g.output();
        res = g.mat[0][0] * k % mod * (k - 1) % mod * (k - 2);
        res += g.mat[1][0] * k % mod * (k - 1);
    }
    return (res) % mod;
}
int eular(int n)
{
    int i, res = 1;
    for (i = 2; i * i <= n; ++i)
    {
        if (n % i == 0)
        {
            n /= i; res *= i - 1;
            while (n % i == 0)
            {
                n /= i; res *= i;
            }
        }
    }
    if (n > 1)   res *= n - 1;
    return res;
}
int eularbyPR(int x)
{
    int res, i;
    res = x;
    for (i = 0; prime[i] * prime[i] <= x; i++)
    {
        if (x % prime[i] == 0)
        {
            res -= res / prime[i];
            while (x % prime[i] == 0)
                x /= prime[i];
        }
    }
    if (x > 1)
        res -= res / x;
    return res;
}
long long Burnside(int n, int k)
{
    long long ans=0;
    int i;
    Factor(n);
    for (i = 0; i < factor.size(); i++)
    {
        ans += F(factor[i], k) * eular(n / factor[i]) % mod;
         if (ans >= mod)
            ans -= mod;
    }
    return (ans * Inv(n, mod) + mod) % mod;
}
int main()
{
#ifdef DeBUGs
    freopen("C:\\Users\\Sky\\Desktop\\1.in", "r", stdin);
#endif
    int n, k;
    Init();
    while (scanf("%d%d", &n, &k) + 1)
    {
        printf("%I64d\n", (Burnside(n, k - 1)*k + mod) % mod);
    }

    return 0;
}


内容概要:该论文研究增程式电动汽车(REEV)的能量管理策略,针对现有优化策略实时性差的问题,提出基于工况识别的自适应等效燃油消耗最小策略(A-ECMS)。首先建立整车Simulink模型和基于规则的策略;然后研究动态规划(DP)算法和等效燃油最小策略;接着通过聚类分析将道路工况分为四类,并设计工况识别算法;最后开发基于工况识别的A-ECMS,通过高德地图预判工况类型并自适应调整SOC分配。仿真显示该策略比规则策略节油8%,比简单SOC规划策略节油2%,并通过硬件在环实验验证了实时可行性。 适合人群:具备一定编程基础,特别是对电动汽车能量管理策略有兴趣的研发人员和技术爱好者。 使用场景及目标:①理解增程式电动汽车能量管理策略的基本原理;②掌握动态规划算法和等效燃油消耗最小策略的应用;③学习工况识别算法的设计和实现;④了解基于工况识别的A-ECMS策略的具体实现及其优化效果。 其他说明:此资源不仅提供了详细的MATLAB/Simulink代码实现,还深入分析了各算法的原理和应用场景,适合用于学术研究和工业实践。在学习过程中,建议结合代码调试和实际数据进行实践,以便更好地理解策略的优化效果。此外,论文还探讨了未来的研究方向,如深度学习替代聚类、多目标优化以及V2X集成等,为后续研究提供了思路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值