CodeForces - 707C Pythagorean Triples (数学)

本文介绍了一种算法,用于根据给定的一条边长找到对应的勾股数三元组。讨论了勾股数的性质,并提供了当给定边长为斜边或直角边时寻找其余两边的具体方法。

C. Pythagorean Triples
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Katya studies in a fifth grade. Recently her class studied right triangles and the Pythagorean theorem. It appeared, that there are triples of positive integers such that you can construct a right triangle with segments of lengths corresponding to triple. Such triples are called Pythagorean triples.

For example, triples (3, 4, 5)(5, 12, 13) and (6, 8, 10) are Pythagorean triples.

Here Katya wondered if she can specify the length of some side of right triangle and find any Pythagorean triple corresponding to such length? Note that the side which length is specified can be a cathetus as well as hypotenuse.

Katya had no problems with completing this task. Will you do the same?

Input

The only line of the input contains single integer n (1 ≤ n ≤ 109) — the length of some side of a right triangle.

Output

Print two integers m and k (1 ≤ m, k ≤ 1018), such that nm and k form a Pythagorean triple, in the only line.

In case if there is no any Pythagorean triple containing integer n, print  - 1 in the only line. If there are many answers, print any of them.

Examples
input
3
output
4 5
input
6
output
8 10
input
1
output
-1
input
17
output
144 145
input
67
output
2244 2245
Note

Illustration for the first sample.


给定N  求 直接三角形 另外两条边.

根据直角三角形的两条性质

当n*n为奇数时  有  a+b=n*n  ;  a-b=1;

当n*n为偶数时,有 a+b=(n*n)/2;  a-b=2;

联立 解 a,b;  

并且 当 n=1  || n=2 时  无解;                                                         A B C

分析:   可以发现 从3 开始是  3,5,7,11,13,15  素数 是 可以组成的,    3-4-5    已知A   B=(A*A-1)/2;  C=B+1;

 对于偶数, 一定 可以变成素数的倍数, 那么 队友 6-8-10- 6是3的倍数, 那么 就可以转成成 3*2-4*2-5*2; k=6/3;

 对于是2的倍数的, 要特殊处理, 因为2 无法构成直角三角形, 4 可以, 是2的倍数就一定是4 的倍数 4-3-5 成倍数关系就可以

 例如 1024 是2 的倍数1024/2=512 1024/4=256 3*256=768 5*256=1280     1024-768-1280;


代码实现:

#include <bits/stdc++.h>
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <cmath>
#include <math.h>
#include <cstring>
#include <string>
#include <queue>
#include <deque>
#include <stack>
#include <stdlib.h>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <vector>
#define mem(a,b) memset(a,b,sizeof(a))
#define findx(x,b,n) lower_bound(b+1,b+1+n,x)-b
#define FIN      freopen("input.txt","r",stdin)
#define FOUT     freopen("output.txt","w",stdout)
#define SHUT ios_base::sync_with_stdio(false); cout.setf(ios::fixed);cout.precision(20); cout.tie(nullptr); cin.tie(nullptr);
#define lson rt << 1, l, mid
#define rson rt << 1|1, mid + 1, r
#define  FI(n) IO::read(n)
#define  Be IO::begin()

using namespace std;
typedef long long ll;
const double PI=acos(-1);
const int INF=0x3f3f3f3f;
const double esp=1e-6;
const int maxn=1e6+5;
const int MAXN=1e5+5;
const int MOD=1e9+7;
const int mod=1e9+7;
int dir[5][2]={0,1,0,-1,1,0,-1,0};

namespace IO {
	const int MT = 5e7;
	char buf[MT]; int c,sz;
	void begin(){
		c = 0;
		sz = fread(buf, 1, MT, stdin);//一次性输入
	}
	template<class T>
	inline bool read(T &t){
		while( c < sz && buf[c] != '-' && ( buf[c]<'0' || buf[c] >'9')) c++;
		if( c>=sz) return false;
		bool flag = 0; if( buf[c]== '-') flag = 1,c++;
		for( t=0; c<=sz && '0' <=buf[c] && buf[c] <= '9'; c++ ) t= t*10 + buf[c]-'0';
		if(flag) t=-t;
		return true;
	}
}
ll inv[maxn*2];
inline void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){ x=1; y=0; d=a; }else{ ex_gcd(b,a%b,d,y,x); y-=x*(a/b);};}
inline ll gcd(ll a,ll b){ return b?gcd(b,a%b):a;}
inline ll exgcd(ll a,ll b,ll &x,ll &y){if(!b){x=1;y=0;return a;}ll ans=exgcd(b,a%b,x,y);ll temp=x;x=y;y=temp-a/b*y;return ans;}
inline ll lcm(ll a,ll b){ return b/gcd(a,b)*a;}
inline ll qpow(ll x,ll n){ll res=1;for(;n;n>>=1){if(n&1)res=(res*x)%MOD;x=(x*x)%MOD;}return res;}
inline ll inv_exgcd(ll a,ll n){ll d,x,y;ex_gcd(a,n,d,x,y);return d==1?(x+n)%n:-1;}
inline ll inv1(ll b){return b==1?1:(MOD-MOD/b)*inv1(MOD%b)%MOD;}
inline ll inv2(ll b){return qpow(b,MOD-2);}
int main()
{
    ll n;
    cin>>n;
    ll p=n*n;
    if(n==1||n==2)
    {
        cout<<-1<<endl;
        return 0;
    }
    if(p%2==0)
    {
        cout<<(p/2+2)/2-2<<" "<<(p/2+2)/2<<endl;
    }
    else
    {
        cout<<(p-1)/2<<" "<<(p-1)/2+1<<endl;
    }
    return 0;
}


123

引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.youkuaiyun.com/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值