Module 2 : Identification and Quantification of Proteins & MetabolitesStatistics

Java Python Module 2 Assignment: Identification and Quantification of Proteins & Metabolites

Question 1. Study Design (30% of assignment)

Background

Biomarkers indicate associations between biological measurements and states of health and wellness at the subcellular, cellular, system, and organism levels. Proteomics advances allow us to detect and quantify thousands of proteins at a time, leading to the discovery of an avalanche of potential biomarkers. However, critical steps in experimental design are often neglected and the failure to validate candidate biomarkers results in a lack of experimental rigor, data reproducibility, and identification of biomarkers. To standardized biomarker studies, experimental designs now include two fundamental steps; 1) identification of proteins as candidate biomarkers and 2) verification of the identity and differential expression of the candidate biomarkers. Implementing methodical experimental design at each step ensures robust, reproducible data, allowing meaningful biological interpretations of candidate biomarkers increasing the likelihood of discovering relevant, actionable biomarkers.

Task

You are designing abiomarker study using mass-spectrometry-based proteomic analysis, please outline your approach for the 1) biomarker identification, and 2) biomarker verification steps in your study. Describe the key steps in your workflow, include your rationale and any considerations when using these workflows for such studies.

You may include diagrams/tables and references. References should be in the style. of the Journal of Biochemistry and Molecular Science. Maximum 400 words, references and figures do not count towards the word limit.

Question 2. Sample Preparation (30% of assignment)

Background

Metabolites have complex chemical structures, often requiring chemical modifications for suitable analysis. Derivatization is commonly used for metabolomics studies to enable large scale metabolite analysis on GC-MS.

Task

Discuss the importance, purpose and types of derivatizations used for GC-MS. Please detail the biochemical mechanisms, target groups and usage of thesederivatizations, highlighting their advantages and disadvantages.

You may include diagrams/tables and references. References should be in the style. of the Journal of Biochemistry and Molecular Science. Maximum 400 words, references and figures do not count towards the word limit.

Question 3. Data visualization and analysis (40% of assignment)

Prot Module 2 Assignment: Identification and Quantification of Proteins & MetabolitesStatistics eomics and metabolomics studies produce large datasets which require sophisticated data processing, visualization, and analysis. Data analysis pipelines can be completed efficiently in programs such as MS-DIAL.

First download and set-up the MS-DIAL program and the sample dataset using the instructions provided and take sometime exploring the program.

‘Assignment  2  MSDial_setup_instructions’

Next, following the ‘MS-DIAL Tutorial’ you will analyze and visualize the dataset and describe your data results.

Please follow the instructions below and answer the corresponding questions as complete but short answers, you may include graphics from your analysis.

1. Explore the features.

Question a) How many compounds were detected?

Question b) How many compounds were identified matching the library?

2. Compound search.

• Here can change the result for each compound of interest.

• Sort by dot prod. (This is a type of confidence.)

Question c) What do ion matches with very low and very high numbers look like?

Question d) Compare and describe the EI spectra between the measurement (Mass spectrum acquired) and the reference (database).

3. Click on Show ion table (this is all the compounds that were detected and identified from the database search.

• Here you can sort the data by:

o p-value (how significant the difference is)

o Fold change (how large the difference is)

o S/N – signal to noise (how large the peak in the chromatogram)

Question e) How many compounds were significantly different (p<0.05) between the two Groups?

Question f) What was the largest fold change, in what direction and for what metabolite?

4. Data visualisation

• Select ‘Data Visualisation’

• Click ‘normalisation’

• Select ‘Total Ion Chromatogram (TIC)’

• Now work through each of the data visualisation methods

Question g) Perform a PCA, describe if you used all compounds detected and why?

Question h) Describe the PCA plot and explain what % of variation is explained by PC1 and PC2?

5. Create a partial least square plot PLS

Question i) Does the distributing of samples change when you include/exclude unknown compounds? Describe and if it is different from the PCA result         

基于遗传算法的微电网调度(风、光、蓄电池、微型燃气轮机)(Matlab代码实现)内容概要:本文档介绍了基于遗传算法的微电网调度模型,涵盖风能、太阳能、蓄电池和微型燃气轮机等多种能源形式,并通过Matlab代码实现系统优化调度。该模型旨在解决微电网中多能源协调运行的问题,优化能源分配,降低运行成本,提高可再生能源利用率,同时考虑系统稳定性与经济性。文中详细阐述了遗传算法在求解微电网多目标优化问题中的应用,包括编码方式、适应度函数设计、约束处理及算法流程,并提供了完整的仿真代码供复现与学习。此外,文档还列举了大量相关电力系统优化案例,如负荷预测、储能配置、潮流计算等,展示了广泛的应用背景和技术支撑。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事微电网、智能电网优化研究的工程技术人员。; 使用场景及目标:①学习遗传算法在微电网调度中的具体实现方法;②掌握多能源系统建模与优化调度的技术路线;③为科研项目、毕业设计或实际工程提供可复用的代码框架与算法参考; 阅读建议:建议结合Matlab代码逐段理解算法实现细节,重点关注目标函数构建与约束条件处理,同时可参考文档中提供的其他优化案例进行拓展学习,以提升综合应用能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值