1.二叉树
1.1概念
一棵二叉树是结点的一个有限集合,该集合:
- 或者为空
- 或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。

从上图可以看出:
- 二叉树不存在度大于2的结点
- 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
1.2 两种特殊的二叉树
1. 满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。也就是说,如果一棵 二叉树的层数为K,且结点总数是( 2^k - 1),则它就是满二叉树。
2. 完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n 个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从0至n-1的结点一一对应时称之为完 比特就业课 全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
1.3 二叉树的性质

- 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有(2^i - 1) (i>0)个结点
- 若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是(2^k - 1) (k>=0)
- .对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1
- 具有n个结点的完全二叉树的深度k为
2(n + 1)向上取整
- .对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i 的结点有:
- 若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
- 若2i+1<n,左孩子序号:2i+1,否则无左孩子
- 若2i+2<n,左孩子序号:2i+2,否则无左孩子
1.4 二叉树的存储
二叉树的存储结构分为:顺序存储和类似于链表的链式存储。
二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式,具体如下:
// 孩子表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}
// 孩子双亲表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
Node parent; // 当前节点的根节点
}
1.5 二叉树的基本操作
在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。由于现在大家对二叉树结 构掌握还不够深入,为了降低大家学习成本,此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等 二叉树结构了解的差不多时,我们反过头再来研究二叉树真正的创建方式。
public class BinaryTree{
public static class BTNode{
BTNode left;
BTNode right;
int value;
BTNode(int value){
this.value = value;
}
}
private BTNode root;
public void createBinaryTree(){
BTNode node1 = new BTNode(1);
BTNode node1 = new BTNode(2);
BTNode node1 = new BTNode(3);
BTNode node1 = new BTNode(4);
BTNode node1 = new BTNode(5);
BTNode node1 = new BTNode(6);
root = node1;
node1.left = node2;
node2.left = node3;
node1.right = node4;
node4.left = node5;
node5.right = node6;
}
}
注意:上述代码并不是创建二叉树的方式,真正创建二叉树方式后序详解重点讲解。
1.6 二叉树的遍历
1. 前中后序遍历
学习二叉树结构,最简单的方式就是遍历。所谓遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结 点均做一次且仅做一次访问。访问结点所做的操作依赖于具体的应用问题(比如:打印节点内容、节点内容加 1)。 遍历是二叉树上最重要的操作之一,是二叉树上进行其它运算之基础。
在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱,如果按 照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的。如果N代表根节点,L代表根节点的 左子树,R代表根节点的右子树,则根据遍历根节点的先后次序有以下遍历方式:
- NLR:前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点--->根的左子树--->根的右子树。
- LNR:中序遍历(Inorder Traversal)——根的左子树--->根节点--->根的右子树。
- LRN:后序遍历(Postorder Traversal)——根的左子树--->根的右子树--->根节点。
前序递归遍历,中序与后序图解类似。

// 前序遍历
public void preOrder(TreeNode root) {
if (root == null) return;
System.out.print(root.val+" ");
preOrder(root.left);
preOrder(root.right);
}
// 中序遍历
void inOrder(TreeNode root) {
if (root == null) return;
preOrder(root.left);
System.out.print(root.val+" ");
preOrder(root.right);
}
// 后序遍历
void postOrder(TreeNode root) {
if (root == null) return;
preOrder(root.left);
preOrder(root.right);
System.out.print(root.val+" ");
}
前序遍历结果:1 2 3 4 5 6
中序遍历结果:3 2 1 5 4 6
后序遍历结果:3 1 5 6 4 1
2. 层序遍历
层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在 层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层 上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。
void levelOrder(TreeNode root) {
Queue<TreeNode> queue = new LinkedList();
queue.offer(root);
if (root == null){
return ;
}
while (!queue.isEmpty()){
int size = queue.size();
while (size--!= 0){
TreeNode ret = queue.poll();
if(ret.left != null)
queue.offer(ret.left);
if(ret.right != null)
queue.offer(ret.right);
System.out.print(ret+" ");
}
}
}
1.7二叉树的基本操作
// 获取树中节点的个数
int size(Node root);
// 获取叶子节点的个数
int getLeafNodeCount(Node root);
// 子问题思路-求叶子结点个数
// 获取第K层节点的个数
int getKLevelNodeCount(Node root,int k);
// 获取二叉树的高度
int getHeight(Node root);
// 检测值为value的元素是否存在
Node find(Node root, int val);
//层序遍历
void levelOrder(Node root);
// 判断一棵树是不是完全二叉树
boolean isCompleteTree(Node root);
5450





