import torch
from torchvision import datasets
from torchvision import transforms
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
batch_size = 64
loss_list = []
accuracy_list = []
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))
])
train_dataset = datasets.MNIST(root='dataset/mnist/',
train=True,
download=True,
transform = transform)
train_load = DataLoader(train_dataset,
batch_size=64,
shuffle=True,
num_workers=6)
test_dataset = datasets.MNIST(root='dataset/mnist/',
train=False,
download=True,
transform= transform)
test_load = DataLoader(test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=6)
class Net(torch.nn.Module):
"""
1*10*5*5 的卷积层 + relu激活函数 + 最大池化层2*2
10*20*5*5 的卷积层 + relu激活函数 + 最大池化层2*2
将20*4*4 转换为一维张量320*1
然后全连接层输出10*1
"""
def __init__(self):
super(Net, self).__init__()
self.conv_layer1 = torch.nn.Conv2d(in_channels=1, out_channels=10, kernel_size=5)
self.conv_layer2 = torch.nn.Conv2d(in_channels=10, out_channels=20, kernel_size=5)
self.pool_layer = torch.nn.MaxPool2d(kernel_size=2)
self.linear_layer = torch.nn.Linear(320, 10)
def forward(self, x):
batch_size = x.size()[0]
x = F.relu(self.pool_layer(self.conv_layer1(x)))
x = F.relu(self.pool_layer(self.conv_layer2(x)))
x = x.view(batch_size, -1)
x = self.linear_layer(x)
return x
model = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
criterion = nn.CrossEntropyLoss(reduction='mean')
optimizer = optim.SGD(model.parameters(), lr=0.009, momentum=0.5)
def train(epoch):
run_loss = 0.0
for num, data in enumerate(train_load, 0):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
run_loss += loss.item()
if(num % 300==299):
print("epoch=%d,num=%d, loss=%.3f" %(epoch+1, num+1, run_loss/300))
loss_list.append(run_loss)
run_loss = 0
def run_data():
total = 0
correct = 0
with torch.no_grad():
for data in test_load:
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
_, predicted = torch.max(outputs.data, dim=1)
correct += (predicted == labels).sum().item()
total += labels.size()[0]
accuracy = 100 * correct / total
accuracy_list.append(accuracy)
print("Accuracy on test set :%.2f %% [%d, %d]" %(accuracy, correct, total))
if __name__ == '__main__':
for epoch in range(30):
train(epoch)
run_data()
plt.plot(loss_list)
plt.show()
plt.plot(accuracy_list)
plt.show()