sincerit 1211 RSA-拓展欧几里得

1211 RSA
时间限制:2000/1000 MS(Java / Others)内存限制:65536/32768 K(Java /其他)
提交的总数:2894接受的提交内容:1974

问题描述
RSA是加密数据的最强大的方法之一。RSA算法描述如下:

选择两个大素数整数p,q
计算n = p×q,计算F(n)=(p - 1)×(q - 1)
选择整数e(1 < e <F(n)),使得gcd(e,F(n))= 1,e将是公钥
计算d,使得d×e mod F(n)= 1 mod F(n),和d将是私钥
你可以用这种方法加密数据:
C = E(m)= m^ e mod n
当你想解密数据时,使用这个方法:
M = D(c)= c^ d mod n
这里,c是密码字母的整数ASCII值,m是纯文本字母的整数ASCII值。
现在给出p,q,e和一些密码,你的任务是将密码“翻译”成纯文本。

输入
每个案例将以四个整数p,q,e,l开始,后跟一行加密。整数p,q,e,l将在32位整数的范围内。密码由l个由空格分隔的整数组成。
产量
对于每种情况,只需在一行中输出纯文本。您可以假设纯文本的正确结果是可视ASCII字母,您应该将它们输出为可见的字母,它们之间没有空白。
样本输入
101 103 7 11
7716 7746 7497 126 8486 4708 7746 623 7298 7357 3239
样本输出
I-LOVE-ACM。

解密的函数是D(c) = (c^d) % n; c是密码字母的ASCII值,需要求的就是d,根据题意我们可以推出de - kfn = 1; 故使用拓展欧几里得可以得打d和k,然后再解密就行了

https://blog.youkuaiyun.com/zhao5502169/article/details/70239344

/*扩展欧几里得*/
#include <iostream>
#include <stdio.h>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
void extgcd(ll &d, ll e, ll &k, ll fn) {  // d*e - k*fn == 1 
   if (fn == 0) {
     d = 1;
     k = 0;
     return;
   }
   extgcd(d, fn, k, e%fn);  // fn e辗转相处的情况
   ll temp = d;
   d = k;
   k = temp - (e / fn) * k;
} 
int main() {
  ll p, q, e, l;
  while (cin >> p >> q >> e >> l) {
    ll d, k, fn = (p-1) * (q-1), n = p * q, code;
    extgcd(d, e, k, fn);
    while (d <= 0) d += fn;
    for (int i = 0; i < l; i++) {
      cin >> code;
      ll ans = 1;
      for (int j = 1; j <= d; j++) {
        ans *= code;
        ans %= n;
      }
      cout << char(ans);
    }
    cout << "\n";
  }
  return 0;
}

扩展欧几里得
ax + by == 1,已知a, b 求x, y
扩展欧几里得这样排列参数更好记一写, 要求的是传引用的两个

void extend_gcd(int a, int b, int& x, int& y) { // a, b辗转相除求出最大公约数
  if (b == 0) {
     x = 1;
     y = 0;
     return;
   }
   extend_gcd(b, a%b, y, x); 
   y -= (a / b) * x;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值