Description
Given the root of a binary tree, each node in the tree has a distinct value.
After deleting all nodes with a value in to_delete, we are left with a forest (a disjoint union of trees).
Return the roots of the trees in the remaining forest. You may return the result in any order.
Example 1:
Input: root = [1,2,3,4,5,6,7], to_delete = [3,5]
Output: [[1,2,null,4],[6],[7]]
Example 2:
Input: root = [1,2,4,null,3], to_delete = [3]
Output: [[1,2,4]]
Constraints:
The number of nodes in the given tree is at most 1000.
Each node has a distinct value between 1 and 1000.
to_delete.length <= 1000
to_delete contains distinct values between 1 and 1000.
Solution
If a node is in to_delete
, then mark its child node as new root. Also, if a node’s child is in to_delete
, delete them.
Use post-order traversal.
Time complexity:
o
(
n
)
o(n)
o(n)
Space complexity:
o
(
n
)
o(n)
o(n)
Code
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def delNodes(self, root: Optional[TreeNode], to_delete: List[int]) -> List[TreeNode]:
stack = [(root, 0)]
res = []
while stack:
node, status = stack.pop()
if status == 0:
stack.append((node, 1))
if node.left:
stack.append((node.left, 0))
if node.right:
stack.append((node.right, 0))
else:
if node.left and node.left.val in to_delete:
node.left = None
if node.right and node.right.val in to_delete:
node.right = None
if node.val in to_delete:
if node.left:
res.append(node.left)
if node.right:
res.append(node.right)
if root.val not in to_delete:
res.append(root)
return res