K近邻算法之python实践

本文详细介绍了K近邻算法的工作原理,并通过一个具体的例子——海伦女士数据集,展示了从数据处理、数据可视化到特征归一化及最终测试的全过程。

1.k近邻算法

比如样本含x,y两个维度,共3类样本。

现在给出一个测试[1,108],计算测试与样本每一个的L2距离。现在给定一个k值,比如10,统计距离前10个最小中各类别出现的概率,取最大的那个作为预测类别。

https://cuijiahua.com/blog/2017/11/ml_1_knn.html

 

2.例子(海伦女士)

 

2.1处理数据

def file2matrix(filename):
    #打开文件
    fr = open(filename)
    #读取文件所有内容
    arrayOLines = fr.readlines()   //为[‘12 12 12 dis\n’,'13 13 13\n',..]这种list
    #得到文件行数
    numberOfLines = len(arrayOLines)
    #返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
    returnMat = np.zeros((numberOfLines,3))
    #返回的分类标签向量
    classLabelVector = []
    #行的索引值
    index = 0
    for line in arrayOLines:
        #s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ',只删除出现在开头和结尾 
        #的,‘ 12 2\n’--> '12 2'),类型为str
        line = line.strip()
        #使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
        #注意空格和tab的区别
        listFromLine = line.split(' ')
        #将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
        returnMat[index,:] = listFromLine[0:3]  #list和array还是转化为array好
        #根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
        if listFromLine[-1] == 'didntLike':
            classLabelVector.append(1)
        elif listFromLine[-1] == 'smallDoses':
            classLabelVector.append(2)
        elif listFromLine[-1] == 'largeDoses':
            classLabelVector.append(3)
        index += 1
    return returnMat, classLabelVector
 
"""

2.2 数据可视化

def showdatas(datingDataMat, datingLabels):
    #设置汉字格式
    font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)
    #将fig画布分隔成1行1列,不共享x轴和y轴,fig画布的大小为(13,8)
    #当nrow=2,nclos=2时,代表fig画布被分为四个区域,axs[0][0]表示第一行第一个区域
    fig, axs = plt.subplots(nrows=2, ncols=2,sharex=False, sharey=False, figsize=(13,8))
 
    numberOfLabels = len(datingLabels)
    LabelsColors = []
    for i in datingLabels:
        if i == 1:
            LabelsColors.append('black')
        if i == 2:
            LabelsColors.append('orange')
        if i == 3:
            LabelsColors.append('red')
    #画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第二列(玩游戏)数据画散点数据,散点大小为15,透明度为0.5
    axs[0][0].scatter(x=datingDataMat[:,0], y=datingDataMat[:,1], color=LabelsColors,s=15, alpha=.5)
    #设置标题,x轴label,y轴label
    axs0_title_text = axs[0][0].set_title(u'每年获得的飞行常客里程数与玩视频游戏所消耗时间占比',FontProperties=font)
    axs0_xlabel_text = axs[0][0].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font)
    axs0_ylabel_text = axs[0][0].set_ylabel(u'玩视频游戏所消耗时间占',FontProperties=font)
    plt.setp(axs0_title_text, size=9, weight='bold', color='red') 
    plt.setp(axs0_xlabel_text, size=7, weight='bold', color='black') 
    plt.setp(axs0_ylabel_text, size=7, weight='bold', color='black')
 
    #画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5
    axs[0][1].scatter(x=datingDataMat[:,0], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)
    #设置标题,x轴label,y轴label
    axs1_title_text = axs[0][1].set_title(u'每年获得的飞行常客里程数与每周消费的冰激淋公升数',FontProperties=font)
    axs1_xlabel_text = axs[0][1].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font)
    axs1_ylabel_text = axs[0][1].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font)
    plt.setp(axs1_title_text, size=9, weight='bold', color='red') 
    plt.setp(axs1_xlabel_text, size=7, weight='bold', color='black') 
    plt.setp(axs1_ylabel_text, size=7, weight='bold', color='black')
 
    #画出散点图,以datingDataMat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5
    axs[1][0].scatter(x=datingDataMat[:,1], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)
    #设置标题,x轴label,y轴label
    axs2_title_text = axs[1][0].set_title(u'玩视频游戏所消耗时间占比与每周消费的冰激淋公升数',FontProperties=font)
    axs2_xlabel_text = axs[1][0].set_xlabel(u'玩视频游戏所消耗时间占比',FontProperties=font)
    axs2_ylabel_text = axs[1][0].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font)
    plt.setp(axs2_title_text, size=9, weight='bold', color='red') 
    plt.setp(axs2_xlabel_text, size=7, weight='bold', color='black') 
    plt.setp(axs2_ylabel_text, size=7, weight='bold', color='black')
    #设置图例
    didntLike = mlines.Line2D([], [], color='black', marker='.',
                      markersize=6, label='didntLike')
    smallDoses = mlines.Line2D([], [], color='orange', marker='.',
                      markersize=6, label='smallDoses')
    largeDoses = mlines.Line2D([], [], color='red', marker='.',
                      markersize=6, label='largeDoses')
    #添加图例
    axs[0][0].legend(handles=[didntLike,smallDoses,largeDoses])
    axs[0][1].legend(handles=[didntLike,smallDoses,largeDoses])
    axs[1][0].legend(handles=[didntLike,smallDoses,largeDoses])
    #显示图片
    plt.show()

 

æºå¨å­¦ä¹ å®ææç¨ï¼ä¸ï¼ï¼K-è¿é»ç®æ³ï¼å²è¯çº§å¹²è´§é¿æï¼

 

2.3特征归一化

def autoNorm(dataSet):
    #获得数据的最小值
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    #最大值和最小值的范围
    ranges = maxVals - minVals
    #shape(dataSet)返回dataSet的矩阵行列数
    normDataSet = np.zeros(np.shape(dataSet))
    #返回dataSet的行数
    m = dataSet.shape[0]
    #原始值减去最小值
    normDataSet = dataSet - np.tile(minVals, (m, 1))
    #除以最大和最小值的差,得到归一化数据
    normDataSet = normDataSet / np.tile(ranges, (m, 1))
    #返回归一化数据结果,数据范围,最小值
    return normDataSet, ranges, minVals
 
"""

 

2.4 测试

def datingClassTest():
    #打开的文件名
    filename = "datingTestSet.txt"
    #将返回的特征矩阵和分类向量分别存储到datingDataMat和datingLabels中
    datingDataMat, datingLabels = file2matrix(filename)
    #取所有数据的百分之十
    hoRatio = 0.10
    #数据归一化,返回归一化后的矩阵,数据范围,数据最小值
    normMat, ranges, minVals = autoNorm(datingDataMat)
    #获得normMat的行数
    m = normMat.shape[0]
    #百分之十的测试数据的个数
    numTestVecs = int(m * hoRatio)
    #分类错误计数
    errorCount = 0.0
 
    for i in range(numTestVecs):
        #前numTestVecs个数据作为测试集,后m-numTestVecs个数据作为训练集
        classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m,:],
            datingLabels[numTestVecs:m], 4)
        print("分类结果:%d\t真实类别:%d" % (classifierResult, datingLabels[i]))
        if classifierResult != datingLabels[i]:
            errorCount += 1.0
    print("错误率:%f%%" %(errorCount/float(numTestVecs)*100))
 
"""

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值