HDOJ 2602 Bone Collector 0-1背包问题的最简形

背包问题求解
本文介绍了一个经典的背包问题案例,通过编程解决骨收集者如何在有限背包容量下获得最大价值的问题。文章提供了完整的代码实现,使用动态规划算法进行解答。

Bone Collector

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 60848    Accepted Submission(s): 25366


Problem Description
Many years ago , in Teddy’s hometown there was a man who was called “Bone Collector”. This man like to collect varies of bones , such as dog’s , cow’s , also he went to the grave …
The bone collector had a big bag with a volume of V ,and along his trip of collecting there are a lot of bones , obviously , different bone has different value and different volume, now given the each bone’s value along his trip , can you calculate out the maximum of the total value the bone collector can get ?

 

Input
The first line contain a integer T , the number of cases.
Followed by T cases , each case three lines , the first line contain two integer N , V, (N <= 1000 , V <= 1000 )representing the number of bones and the volume of his bag. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
 

Output
One integer per line representing the maximum of the total value (this number will be less than 231).
 

Sample Input
1 5 10 1 2 3 4 5 5 4 3 2 1
 

Sample Output
14
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <cctype>
#define N 1010
#define Max 0xffff
int dp[N][N];
//表示取前i种物品,使它们的总体积不超过j的最优取法取得的价值总和
using namespace std;
int main()
{
    int cas,n,V;
    cin>>cas;
    while(cas--)
    {
        memset(dp,0,sizeof(dp));
        int d[N] {0},w[N] {0};
        /*用两个数组分别存储价值和体积*/
        cin>>n>>V;
        for(int i=1; i<=n; ++i)
            cin>>d[i];
        for(int i=1; i<=n; i++)
            cin>>w[i];
        for(int i=1; i<=n; i++)
        {
            for(int j=0; j<=V; j++)
            {
                if(w[i]<=j)
                    dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+d[i]);
                    //对于每一件物品,有放或者不放两种选择(如果能放下)
                else
                    dp[i][j]=dp[i-1][j];
            }
        }
        cout<<dp[n][V]<<endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值