put
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//如果数组为空,或长度为0,进行初始化(resize方法前面部分代码是初始化)
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//如果要插入的数据数组下标位置上没有数据
if ((p = tab[i = (n - 1) & hash]) == null)
//直接new一个插入
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
//如果数组下标位置上的node和插入key相同,赋值给e(后面通过e来覆盖value)
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//如果数组下标位置上的node是数类型,调用put数方法
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//如果第一位置key不相同,并且是链表不是树,进入这个逻辑
else {
//初始化记录链表元素个数的binCount,并循环
for (int binCount = 0; ; ++binCount) {
//如果p是最后一个node,直接插入到后面,并判断是否需要转树
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//如果链表长度已经是8,第9个插入时链表转树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//如果有相同key,跳出,后面覆盖value
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
//p指向p的next
p = e;
}
}
//e不为空,说明要插入key已存在,覆盖value的值,返回老value的值
if (e != null) { // existing mapping for key
V oldValue = e.value;
//如果是调用的putIfAbsent方法来put,onlyIfAbsent会为true,不覆盖value
//put方法覆盖value
if (!onlyIfAbsent || oldValue == null)
e.value = value;
//LinkedHashMap这个方法才有用,HashMap这个方法没用
afterNodeAccess(e);
return oldValue;
}
}
//操作数加一
++modCount;
//到这一步说明key没用相同的,已经新增了,size加一
//如果size大于扩容阈值(数组长度*扩容因子),进行扩容
if (++size > threshold)
resize();
//LinkedHashMap这个方法才有用,HashMap这个方法没用
afterNodeInsertion(evict);
return null;
}
putTreeVal
/**
* 节点插入树中的方法
*/
final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
int h, K k, V v) {
Class<?> kc = null;
boolean searched = false;
//获取根节点
TreeNode<K,V> root = (parent != null) ? root() : this;
//遍历
for (TreeNode<K,V> p = root;;) {
int dir, ph; K pk;
//比较1.hash
//2.如果继承了Comparable接口,比较compareTo方法
//3.System.identityHashCode()
//4.getClass().getName()
//如果有相同key,返回,结束方法
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0) {
if (!searched) {
TreeNode<K,V> q, ch;
searched = true;
if (((ch = p.left) != null &&
(q = ch.find(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.find(h, k, kc)) != null))
return q;
}
dir = tieBreakOrder(k, pk);
}
TreeNode<K,V> xp = p;
//根据上面判断的左还是右子树,判断当前节点的左还是右子树是否为空,为空则进入判断进行插入,不为空继续循环,直到找到新增的位置
if ((p = (dir <= 0) ? p.left : p.right) == null) {
//把新增的x节点插入双向链表中(链表转树以后,对节点的操作都是同时维护了双向链表和树结构)
//TreeNode既是双向链表也是树
Node<K,V> xpn = xp.next;
TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
if (dir <= 0)
xp.left = x;
else
xp.right = x;
xp.next = x;
x.parent = x.prev = xp;
if (xpn != null)
((TreeNode<K,V>)xpn).prev = x;
//把新增的x节点插入树中
//balanceInsertion方法是节点插入树中,并且旋转使树平衡
//moveRootToFront方法是把balanceInsertion方法返回的root根节点放在table数组的数组下标位置上
moveRootToFront(tab, balanceInsertion(root, x));
return null;
}
}
}
moveRootToFront
/**
* 树的root节点放在table数组上,并且如果root节点不是双向链表的头结点的话,移到双向链表的头结点
*/
static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
int n;
//判断数组和根节点是否为空
if (root != null && tab != null && (n = tab.length) > 0) {
//计算出table的数组下标
int index = (n - 1) & root.hash;
TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
//如果根节点不在table对应下标上
if (root != first) {
Node<K,V> rn;
//根节点指向table对应下标
tab[index] = root;
//如果root节点不是双向链表的头结点的话,移到双向链表的头结点
TreeNode<K,V> rp = root.prev;
if ((rn = root.next) != null)
((TreeNode<K,V>)rn).prev = rp;
if (rp != null)
rp.next = rn;
if (first != null)
first.prev = root;
root.next = first;
root.prev = null;
}
//检查是否符合红黑树的结构
//只有在启动时,环境变量加上--ea才会执行
assert checkInvariants(root);
}
}
treeifyBin
/**
* 链表树化
*/
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
//除了前面的链表长度达到8以外,这里还要判断数组长度是否是达到64
//如果不足64,会扩容,不会树化
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
//满足树化条件,获取到数组下标上的节点,开始树化
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
//先遍历节点,把单向链表转换成双向链表
do {
//把节点类型转换成TreeNode
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
//进行树化
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
treeify
/**
* 链表树化
*/
final void treeify(Node<K,V>[] tab) {
TreeNode<K,V> root = null;
for (TreeNode<K,V> x = this, next; x != null; x = next) {
next = (TreeNode<K,V>)x.next;
x.left = x.right = null;
//第一次循环,设置根节点
if (root == null) {
x.parent = null;
x.red = false;
root = x;
}
else {
K k = x.key;
int h = x.hash;
Class<?> kc = null;
//和put方法里面一样,循环比较,直到到达所插入节点
for (TreeNode<K,V> p = root;;) {
int dir, ph;
K pk = p.key;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
dir = tieBreakOrder(k, pk);
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
x.parent = xp;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
//插入树中,并且旋转使树平衡
root = balanceInsertion(root, x);
break;
}
}
}
}
//树的root节点放在table数组上,并且如果root节点不是双向链表的头结点的话,移到双向链表的头结点
moveRootToFront(tab, root);
}
resize
/**
* 扩容
*/
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
//如果不是初始化,是扩容,进入判断(oldCap==0说明是初始化)
if (oldCap > 0) {
//如果超过最大值,不扩容了(一般不会这么大,这么大就不会用map来存了)
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//数组长度加倍,长度小于最大,大于等于16时才把扩容阈值加倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
//如果都为0,说明是调用这个方法是初始化数组,设置默认值
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
//如果是初始化,进这个判断,返回
if (oldTab != null) {
//遍历老数组
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
//当老数组该下标下不为空时进这个判断
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
//如果只有一个字段,直接放入新数组对应的下标下
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
//如果是树,调用树的拆分扩容方法
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//进行链表的拆分扩容
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
//遍历单向链表
do {
next = e.next;
//将链表节点的hash值和老数组长度进行"与"操作,得到是0还是非零
//通过变换,将链表分为了两个链表,得到"与"操作为0的头结点为loHead尾结点为loTail的链表,和为1的头结点为hiHead尾结点为hiTail链表
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
//如果低位的尾结点不为空,设置低位链表在新数组的(老数组所在下标)的位置上
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
//如果高位的尾结点不为空,设置高位链表在新数组的(老数组所在下标+老数组长度)的位置上
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
split
/**
* 树的拆分扩容方法
*/
final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
TreeNode<K,V> b = this;
// Relink into lo and hi lists, preserving order
TreeNode<K,V> loHead = null, loTail = null;
TreeNode<K,V> hiHead = null, hiTail = null;
int lc = 0, hc = 0;
//树的拆分,还是先根据hash'与'出来两个双向链表(TreeNode既是双向链表也是树),一个高位的一个低位的(详细注释见resize方法下面的代码注释,有点不一样的,这个是双向链表,所以需要把头结点的prev值为空,并且会记录两个链表的长度,lc和hc)
for (TreeNode<K,V> e = b, next; e != null; e = next) {
next = (TreeNode<K,V>)e.next;
e.next = null;
if ((e.hash & bit) == 0) {
if ((e.prev = loTail) == null)
loHead = e;
else
loTail.next = e;
loTail = e;
++lc;
}
else {
if ((e.prev = hiTail) == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
++hc;
}
}
//如果低位的不为空
if (loHead != null) {
//如果数量小于等于6
if (lc <= UNTREEIFY_THRESHOLD)
//直接树转链表(实际是双向链表转单向链表),并放在table里
tab[index] = loHead.untreeify(map);
else {
//双向链表头结点放在table里
tab[index] = loHead;
//如果高位链表为空,说明全是低位链表,说明原来的树没有变化,所以上一步已经完成了,树节点放在table里,如果不为空,则需要进入判断,进行双向链表转树
if (hiHead != null) // (else is already treeified)
loHead.treeify(tab);
}
}
//和上面的意思大致相同
if (hiHead != null) {
if (hc <= UNTREEIFY_THRESHOLD)
tab[index + bit] = hiHead.untreeify(map);
else {
tab[index + bit] = hiHead;
if (loHead != null)
hiHead.treeify(tab);
}
}
}