63. Unique Paths II

探讨如何使用动态规划解决二维网格中避开障碍物寻找从起点到终点的不同路径数量问题。通过初始化边界条件并递推填充状态矩阵来计算可能路径总数。

动态规划的问题,属于坐标型动态规划(二维)

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

java

class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int m = obstacleGrid.length;
        int n = obstacleGrid[0].length;
        int[][] f = new int[m][n];
        for (int i = 0; i < m; i++) {
            if (obstacleGrid[i][0] != 1) {
                f[i][0] = 1;
            } else {
                break;
            }
        }
        for (int j = 0; j < n; j++) {
            if (obstacleGrid[0][j] != 1) {
                f[0][j] = 1;
            } else {
                break;
            }
        }
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                if (obstacleGrid[i][j] == 0) {
                    f[i][j] = f[i - 1][j] + f[i][j - 1];
                } else {
                    f[i][j] = 0;
                }
            }
        }
        return f[m - 1][n - 1];
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ncst

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值