最大子序和问题(C语言求解)

该博客介绍如何使用动态规划方法解决寻找给定整数数组中具有最大和的连续子数组的问题。通过递增序列长度并填充二维表来求解,最后给出C语言实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述如下:给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

这道题可用动态规划的方法求解,思路如下:

以序列【-2,1,-3,4】为例,该序列的长度为4,如果求解它的最大子序列的和呢?

假设我们已经知道,该序列中,所有长度为3的子序列的最大子序列的和,那么,你能否知道整个长度为4的序列的最大子序列的和?

我们来分情况讨论,有以下三种情况:

第一种是,最长的子序列发生了变化,也就是,最长的子序列长度为4,也就是【-2,1,-3,4】本身就是最长子序列,那么,子序列的和当然非常明确,就是这四个数相加 -2 + 1 + -3 + 4 = 0

第二种情况是,当考虑的序列长度为4时,最长子序列的长度没有发生变化,那么,最长的子序列长度依然藏在长度为3的最长子序列当中,即:要么是序列【-2,1,-3】的最长子序列,要么是序列【1,-3,4】的最长子序列。

我们只需要比较, 【-2,1,-3,4】本身; 序列【-2,1,-3】的最长子序列 ;序列【1,-3,4】的最长子序列,这三种情况,谁的值最大,谁就是最终答案即可。

那么,序列【-2ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值