from spam.spamEmail import spamEmailBayes
import re
#spam类对象
spam=spamEmailBayes()
#保存词频的词典
spamDict={}
normDict={}
testDict={}
#保存每封邮件中出现的词
wordsList=[]
wordsDict={}
#保存预测结果,key为文件名,值为预测类别
testResult={}
#分别获得正常邮件、垃圾邮件及测试文件名称列表
normFileList=spam.get_File_List("./../data/normal")
spamFileList=spam.get_File_List("./../data/spam")
testFileList=spam.get_File_List("./../data/test")
#获取训练集中正常邮件与垃圾邮件的数量
normFilelen=len(normFileList)
spamFilelen=len(spamFileList)
#获得停用词表,用于对停用词过滤
stopList=spam.getStopWords()
#获得正常邮件中的词频for fileName in normFileList:
wordsList.clear()
for line in open("./../data/normal/"+fileName):
#过滤掉非中文字符
rule=re.compile(r"[^\u4e00-\u9fa5]")
line=rule.sub("",line)
#将每封邮件出现的词保存在wordsList中
spam.get_word_list(line,wordsList,stopList)
#统计每个词在所有邮件中出现的次数
spam.addToDict(wordsList, wordsDict)
normDict=wordsDict.copy()
#获得垃圾邮件中的词频
wordsDict.clear()
for fileName in spamFileList:
wordsList.clear()
for line in open("./../data/spam/"+fileName):
rule=re.compile(r"[^\u4e00-\u9fa5]")
line=rule.sub("",line)
spam.get_word_list(line,wordsList,stopList)
spam.addToDict(wordsList, wordsDict)
spamDict=wordsDict.copy()
# 测试邮件for fileName in testFileList:
testDict.clear( )
wordsDict.clear()
wordsList.clear()
for line in open("./../data/test/"+fileName):
rule=re.compile(r"[^\u4e00-\u9fa5]")
line=rule.sub("",line)
spam.get_word_list(line,wordsList,stopList)
spam.addToDict(wordsList, wordsDict)
testDict=wordsDict.copy()
#通过计算每个文件中p(s|w)来得到对分类影响最大的15个词
wordProbList=spam.getTestWords(testDict, spamDict,normDict,normFilelen,spamFilelen)
#对每封邮件得到的15个词计算贝叶斯概率
p=spam.calBayes(wordProbList, spamDict, normDict)
if(p>0.9):
testResult.setdefault(fileName,1)
else:
testResult.setdefault(fileName,0)
#计算分类准确率(测试集中文件名低于1000的为正常邮件)
testAccuracy=spam.calAccuracy(testResult)
for i,ic in testResult.items():
print(i+"/"+str(ic))
print(testAccuracy)
import jieba;
import os;
classspamEmailBayes:#获得停用词表defgetStopWords(self):
stopList=[]
for line in open("../data/中文停用词表.txt"):
stopList.append(line[:len(line)-1])
return stopList;
#获得词典defget_word_list(self,content,wordsList,stopList):#分词结果放入res_list
res_list = list(jieba.cut(content))
for i in res_list:
if i notin stopList and i.strip()!=''and i!=None:
if i notin wordsList:
wordsList.append(i)
#若列表中的词已在词典中,则加1,否则添加进去defaddToDict(self,wordsList,wordsDict):for item in wordsList:
if item in wordsDict.keys():
wordsDict[item]+=1else:
wordsDict.setdefault(item,1)
defget_File_List(self,filePath):
filenames=os.listdir(filePath)
return filenames
#通过计算每个文件中p(s|w)来得到对分类影响最大的15个词defgetTestWords(self,testDict,spamDict,normDict,normFilelen,spamFilelen):
wordProbList={}
for word,num in testDict.items():
if word in spamDict.keys() and word in normDict.keys():
#该文件中包含词个数
pw_s=spamDict[word]/spamFilelen
pw_n=normDict[word]/normFilelen
ps_w=pw_s/(pw_s+pw_n)
wordProbList.setdefault(word,ps_w)
if word in spamDict.keys() and word notin normDict.keys():
pw_s=spamDict[word]/spamFilelen
pw_n=0.01
ps_w=pw_s/(pw_s+pw_n)
wordProbList.setdefault(word,ps_w)
if word notin spamDict.keys() and word in normDict.keys():
pw_s=0.01
pw_n=normDict[word]/normFilelen
ps_w=pw_s/(pw_s+pw_n)
wordProbList.setdefault(word,ps_w)
if word notin spamDict.keys() and word notin normDict.keys():
#若该词不在脏词词典中,概率设为0.4
wordProbList.setdefault(word,0.47)
sorted(wordProbList.items(),key=lambda d:d[1],reverse=True)[0:15]
return (wordProbList)
#计算贝叶斯概率defcalBayes(self,wordList,spamdict,normdict):
ps_w=1
ps_n=1for word,prob in wordList.items() :
print(word+"/"+str(prob))
ps_w*=(prob)
ps_n*=(1-prob)
p=ps_w/(ps_w+ps_n)
# print(str(ps_w)+""+str(ps_n))return p
#计算预测结果正确率defcalAccuracy(self,testResult):
rightCount=0
errorCount=0for name ,catagory in testResult.items():
if (int(name)<1000and catagory==0) or(int(name)>1000and catagory==1):
rightCount+=1else:
errorCount+=1return rightCount/(rightCount+errorCount)