原题:
Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example 1:
Input: intervals = [[1,3],[6,9]], newInterval = [2,5]
Output: [[1,5],[6,9]]
Example 2:
Input: intervals = [[1,2],[3,5],[6,7],[8,10],[12,16]], newInterval = [4,8]
Output: [[1,2],[3,10],[12,16]]
Explanation: Because the new interval [4,8] overlaps with [3,5],[6,7],[8,10].
大致题意:
有一个按start值排好序且两两互不重叠的区间集合,插入一个新的区间后进行合并,返回新的集合。
考虑到只排序了start值,无论如何怎么优化应该都是O(n)的复杂度。所以只要从头到尾扫描一遍集合,先将end值小于新区间start值的区间跳过,然后不断与新的区间进行合并直到集合区间start大于新区间的end。
class Solution {
public:
vector<Interval> insert(vector<Interval>& intervals, Interval newInterval) {
vector<Interval> res;
int i = 0, n = intervals.size();
while (i < n && intervals[i].end < newInterval.start) {
res.push_back(intervals[i]);
i++;
}
Interval cur(newInterval.start, newInterval.end);
while (i < n && intervals[i].start <= cur.end) {
cur.start = min(cur.start, intervals[i].start);
cur.end = max(cur.end, intervals[i].end);
i++;
}
res.push_back(cur);
while (i < n) {
res.push_back(intervals[i++]);
}
return res;
}
};
原题链接:https://leetcode.com/problems/insert-interval/description/
一开始纠结了好久怎么优化,甚至想in place的改,后来发现最简单粗暴的方法最好。。不少题都是这样
应该in place也是可以做到的,但是没想到比开个新的数组更清晰的方法