Understanding of ArcLoss in 《ArcFace -Additive Angular Margin Loss for Deep Face Recognition》

ArcFace主要贡献在于使用ArcFace Loss训练DCNN模型进行人脸识别。文章通过对比Softmax损失函数,解释了ArcFace Loss如何通过增加角度余弦距离的惩罚项,增强类别内紧凑性和类别间差异性,从而提高特征表示的学习难度并使特征更接近各自类别的中心方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • Introduction
    Here is some understanding of ArcLoss in <ArcFace: Additive Angular Margin Loss for Deep Face Recognition> ArcFace ’ main contribution is training a DCNN model with ArcFace Loss. In face recognition task, firstly train a DCNN with loss function. The common way for doing that is in using Softmax loss function, which declared below:

  • Softmax

    • formula (1):
      在这里插入图片描述
      Our goal is to minimise L1, so the more L1 approaches to 0, the better the model is. We notice the formula, when L1 equals to 0, means log(X) equals to 0 so that X should more approach to 1. And only if e^(W_yi xi + b_yi)^ is maxed enough, the whole part of X will equal to 1.
      So during the training procession, the weights W will convergence to a matrix to make xi multiply W_yi large enough.
  • <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值