国国立卫生研究院 (NIH) 和耶鲁大学等机构在Computer Science发表论文:AgentMD: Empowering Language Agents for Risk Prediction with Large-Scale Clinical Tool Learning.

临床计算器在医疗保健领域发挥着重要作用,可为预后等各种目的提供准确的循证预测。然而,可用性挑战、传播不畅和功能受限等问题限制了这些计算器的广泛使用。利用大量临床计算器集合来增强大型语言模型,为克服这些障碍和提高工作流程效率提供了机会,但手工整理过程的可扩展性是一个重大挑战。
为此,来自美国国立卫生研究院(NIH)、马里兰大学、耶鲁大学和佛罗里达州立大学的研究团队提出了一个新型语言智能体——AgentMD,它能够在各种临床环境中整理和应用临床计算器。利用已发表的文献,AgentMD 自动收集了 2164 种具有可执行功能和结构化文档的临床计算器,统称为 RiskCalcs。人工评估显示,RiskCalcs 工具在三项质量指标上的准确率超过了 80%。
在推理时,AgentMD 可以根据患者描述自动选择和应用相关的 RiskCalcs 工具。在新设立的 RiskQA 基准上,AgentMD 明显优于使用 GPT-4 的思维链提示(准确率分别为 87.7%、40.9%)。此外,研究团队还将 AgentMD 应用于真实世界的临床笔记来分析人群和风险级别的患者特征。研究表明,语言智能体与临床计算器在医疗分析和患者护理方面具有实用性。
大语言模型(LLM)|ChatGPT相关文章(以下点击可阅读):
大语言模型简化了临床研究的自动化机器学习 | 临床科研的福音

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



