robot framework环境搭建

本文转自:http://www.cnblogs.com/puresoul/p/3854963.html

一、 robot framework环境搭建:

  官网:http://robotframework.org/

序号安装包名安装方法下载地址备注
1pythonexe文件,直接双击安装https://www.python.org/download/releases/2.7.8/安装路径不能有空格
2setuptools下载ez_setup.py文件,双击https://pypi.python.org/pypi/setuptoolsPython 的套件管理程式
3pip

1、cmd进入ez_setup.py文件目录

2、用setuptools安装:easy_install pip

https://pip.pypa.io/en/latest/index.htmlPython 的套件管理程式
4robot framework1、pip install robotframework
2、源码:python setup.py install
3、exe文件,直接双击安装
https://pypi.python.org/pypi/robotframeworkrobot framework本身
https://github.com/robotframework/robotframework
5wxPythonexe文件,直接双击安装http://wxpython.org/download.php#stable支撑Ride的运行库
6robotframework-ride1、pip install robotframework-ride
2、源码:pythont setup.py install
3、exe文件,直接双击安装
https://pypi.python.org/pypi/robotframework-rideride
7selenium2library1、pip install robotframework-selenium2library
2、源码:pythont setup.py install
3、exe文件,直接双击安装
https://pypi.python.org/pypi/robotframework-selenium2library
selenium2测试库,
基于webdriver驱动
8cx_Oracleexe文件,直接双击安装http://sourceforge.net/projects/cx-oracle/files/

连接oracle用的(支持第9步)

 

9databaselibrary1、pip install robotframework-databaselibrary
2、源码:pythont setup.py install
https://github.com/franz-see/Robotframework-Database-LibraryDB库
10requests
pip install requests
https://pypi.python.org/pypi/requests 支持第11步,否则RF引入RequestsLibrary库会报错
11RequestsLibrary
pip install -U robotframework-requests
https://github.com/bulkan/robotframework-requestshttp request库

基于Swin Transformer与ASPP模块的图像分类系统设计与实现 本文介绍了一种结合Swin Transformer与空洞空间金字塔池化(ASPP)模块的高效图像分类系统。该系统通过融合Transformer的全局建模能力和ASPP的多尺度特征提取优势,显著提升了模型在复杂场景下的分类性能。 模型架构创新 系统核心采用Swin Transformer作为骨干网络,其层次化窗口注意力机制能高效捕获长距离依赖关系。在特征提取阶段,创新性地引入ASPP模块,通过并行空洞卷积(膨胀率6/12/18)和全局平均池化分支,实现多尺度上下文信息融合。ASPP输出经1x1卷积降维后与原始特征拼接,有效增强了模型对物体尺寸变化的鲁棒性。 训练优化策略 训练流程采用Adam优化器(学习率0.0001)和交叉熵损失函数,支持多GPU并行训练。系统实现了完整的评估指标体系,包括准确率、精确率、召回率、特异度和F1分数等6项指标,并通过动态曲线可视化模块实时监控训练过程。采用早停机制保存最佳模型,验证集准确率提升可达3.2%。 工程实现亮点 1. 模块化设计:分离数据加载、模型构建和训练流程,支持快速迭代 2. 自动化评估:每轮训练自动生成指标报告和可视化曲线 3. 设备自适应:智能检测CUDA可用性,无缝切换训练设备 4. 中文支持:优化可视化界面的中文显示与负号渲染 实验表明,该系统在224×224分辨率图像分类任务中,仅需2个epoch即可达到92%以上的验证准确率。ASPP模块的引入使小目标识别准确率提升15%,特别适用于医疗影像等需要细粒度分类的场景。未来可通过轻量化改造进一步优化推理速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值