kubernetes top使用方法

文章介绍了如何在Kubernetes集群中安装和使用metrics-server来监控node和pods的CPU及内存使用状态。通过kubectltop命令,用户可以便捷地查看各个容器和节点的资源消耗情况,从而优化集群性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目的

支持 kubectl top 命令
用于检测 node, pods 一些 cpu, mem 使用状态

镜像

镜像版本说明
k8s.gcr.io/metrics-server/metrics-serverv0.6.2metric server

安装方法

metric server 部署

# kubectl  apply -f https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/components.yaml

serviceaccount/metrics-server created
clusterrole.rbac.authorization.k8s.io/system:aggregated-metrics-reader created
clusterrole.rbac.authorization.k8s.io/system:metrics-server created
rolebinding.rbac.authorization.k8s.io/metrics-server-auth-reader created
clusterrolebinding.rbac.authorization.k8s.io/metrics-server:system:auth-delegator created
clusterrolebinding.rbac.authorization.k8s.io/system:metrics-server created
service/metrics-server created
deployment.apps/metrics-server created
apiservice.apiregistration.k8s.io/v1beta1.metrics.k8s.io created

支持高可用
如果需要更多容器, 自己修改 yaml 容器中 replics:2 参数

# kubectl apply -f https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/high-availability.yaml
serviceaccount/metrics-server unchanged
clusterrole.rbac.authorization.k8s.io/system:aggregated-metrics-reader unchanged
clusterrole.rbac.authorization.k8s.io/system:metrics-server unchanged
rolebinding.rbac.authorization.k8s.io/metrics-server-auth-reader unchanged
clusterrolebinding.rbac.authorization.k8s.io/metrics-server:system:auth-delegator unchanged
clusterrolebinding.rbac.authorization.k8s.io/system:metrics-server unchanged
service/metrics-server unchanged
deployment.apps/metrics-server configured
poddisruptionbudget.policy/metrics-server created
apiservice.apiregistration.k8s.io/v1beta1.metrics.k8s.io unchanged

查询容器状态

# kubectl -n kube-system get pods
NAME                                                READY   STATUS    RESTARTS   AGE
coredns-6d4b75cb6d-6x8ln                            1/1     Running   0          109m
coredns-6d4b75cb6d-f7h6n                            1/1     Running   0          109m
etcd-ns-yun-020064.vclound.com                      1/1     Running   0          109m
kube-apiserver-ns-yun-020064.vclound.com            1/1     Running   0          109m
kube-controller-manager-ns-yun-020064.vclound.com   1/1     Running   0          109m
kube-proxy-2pgjb                                    1/1     Running   0          109m
kube-proxy-gnfg4                                    1/1     Running   0          22m
kube-proxy-nshkb                                    1/1     Running   0          22m
kube-proxy-p5s4p                                    1/1     Running   0          24m
kube-proxy-x72fz                                    1/1     Running   0          22m
kube-scheduler-ns-yun-020064.vclound.com            1/1     Running   0          109m
metrics-server-67549d64d5-lsvgg                     1/1     Running   0          33s
metrics-server-67549d64d5-xcpfn                     1/1     Running   0          33s

使用方法

pods 监控

# kubectl -n kube-system  top pods
NAME                                                CPU(cores)   MEMORY(bytes)
coredns-6d4b75cb6d-6x8ln                            2m           30Mi
coredns-6d4b75cb6d-f7h6n                            2m           25Mi
etcd-ns-yun-020064.vclound.com                      14m          65Mi
kube-apiserver-ns-yun-020064.vclound.com            62m          361Mi
kube-controller-manager-ns-yun-020064.vclound.com   14m          80Mi
kube-proxy-2pgjb                                    1m           27Mi
kube-proxy-gnfg4                                    1m           24Mi
kube-proxy-nshkb                                    1m           23Mi
kube-proxy-p5s4p                                    1m           29Mi
kube-proxy-x72fz                                    1m           22Mi
kube-scheduler-ns-yun-020064.vclound.com            3m           38Mi
metrics-server-67549d64d5-lsvgg                     3m           23Mi
metrics-server-67549d64d5-xcpfn                     8m           22Mi

node 监控

# kubectl top node
NAME                        CPU(cores)   CPU%   MEMORY(bytes)   MEMORY%
ns-yun-020064.vclound.com   162m         0%     7734Mi          6%
ns-yun-020065.vclound.com   27m          0%     1001Mi          0%
ns-yun-020066.vclound.com   35m          0%     1001Mi          0%
ns-yun-020067.vclound.com   32m          0%     1005Mi          0%
ns-yun-020068.vclound.com   51m          0%     987Mi           0%
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Terry_Tsang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值