https://leetcode.com/problems/perfect-squares/
Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...
) which sum to n.
Example 1:
Input: n =12
Output: 3 Explanation:12 = 4 + 4 + 4.
分析:
分解成完全平方数,可以把分解的过程看成寻找路径。两个数值之间相差的是完全平方数就可以连通。
第一种方法是使用BFS, 这种思路要注意的是前面到达的肯定路径更短,所以设置一个访问标记,前面访问过就加到队列并且设置标记为访问过。
public int numSquares(int n) {
List<Integer> squares = generateSquares(n);
boolean[] flag = new boolean[n+1];
flag[n] = true;
Queue<Integer> queue = new LinkedList<Integer>();
queue.add(n);
int num = 0;
while(!queue.isEmpty()){
int size = queue.size();
num++;
while(size-->0){
int cur = queue.poll();
for(int s : squares){
int rest = cur - s;
if(rest<0)
break;
if(rest==0)
return num;
if(flag[rest])
continue;
flag[rest] = true;//BFS先到达的肯定路径更短,标记过就不用考虑
queue.add(rest);
}
}
}
return num;
}
private List<Integer> generateSquares(int n){
List<Integer> res = new ArrayList<Integer>();
int square = 1, diff=3;
while(square<=n){
res.add(square);
square += diff;
diff += 2;
}
return res;
}
还有一种方法是DP。
dp[0] = 0
dp[1] = dp[0]+1 = 1
dp[2] = dp[1]+1 = 2
dp[3] = dp[2]+1 = 3
dp[4] = Min{ dp[4-1*1]+1, dp[4-2*2]+1 }
= Min{ dp[3]+1, dp[0]+1 }
= 1
dp[5] = Min{ dp[5-1*1]+1, dp[5-2*2]+1 }
= Min{ dp[4]+1, dp[1]+1 }
= 2
.
.
.
dp[13] = Min{ dp[13-1*1]+1, dp[13-2*2]+1, dp[13-3*3]+1 }
= Min{ dp[12]+1, dp[9]+1, dp[4]+1 }
= 2
.
.
.
dp[n] = Min{ dp[n - i*i] + 1 }, n - i*i >=0 && i >= 1
public int numSquares(int n) {
int[] dp = new int[n+1];
Arrays.fill(dp, Integer.MAX_VALUE);
dp[0]=0;
for(int i=1;i<=n;i++){
int min = Integer.MAX_VALUE;
int j=1;
while(i-j*j>=0){
min = Math.min(min, dp[i-j*j]+1);
j++;
}
dp[i] = min;
}
return dp[n];
}