UVa 10369 - Arctic Network(求最小生成树的第k小边)

本文探讨了如何利用最小生成树算法解决北极网络连接问题,旨在寻找最优的无线电通信距离D,确保所有站点通过卫星或无线电至少间接相连。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链接:

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=24&page=show_problem&problem=1310


题目:

Problem C: Arctic Network

The Department of National Defence (DND) wishes to connect several northern outposts by a wireless network. Two different communication technologies are to be used in establishing the network: every outpost will have a radio transceiver and some outposts will in addition have a satellite channel.

Any two outposts with a satellite channel can communicate via the satellite, regardless of their location. Otherwise, two outposts can communicate by radio only if the distance between them does not exceed D, which depends of the power of the transceivers. Higher power yields higher D but costs more. Due to purchasing and maintenance considerations, the transceivers at the outposts must be identical; that is, the value of D is the same for every pair of outposts.

Your job is to determine the minimum D required for the transceivers. There must be at least one communication path (direct or indirect) between every pair of outposts.

The first line of input contains N, the number of test cases. The first line of each test case contains 1 <= S <= 100, the number of satellite channels, and S < P <= 500, the number of outposts. P lines follow, giving the (x,y) coordinates of each outpost in km (coordinates are integers between 0 and 10,000). For each case, output should consist of a single line giving the minimum D required to connect the network. Output should be specified to 2 decimal points.

Sample Input

1
2 4
0 100
0 300
0 600
150 750

Sample Output

212.13


题目大意:

南极有n个科研站, 要把这些站用卫星或者无线电连接起来,使得任意两个都能直接或者间接相连。任意两个都有安装卫星设备的,都可以直接通过卫星通信,不管它们距离有多远。 而安装有无线电设备的两个站,距离不能超过D。 D越长费用越多。

现在有s个卫星设备可以安装,还有足够多的无线电设备,求一个方案,使得费用D最少(D取决与所有用无线电通信的花费最大的那条路径)。


分析与总结:

很自然的想到求最小生成树,然后为了使得D费用最少,就要让其中路径最长的那些用来安装卫星。 s个通信卫星可以安装s-1条最长的那些路径。 那么, 最小生成树中第p-s大的路径长度就是D。

只需要求出最小生成树上的所有路径长度,排好序,边得到答案。




代码:

1.Kruskal

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define N 505
using namespace std;
double x[N], y[N], ans[N*N];
int n,m,f[N*N],rank[N*N]; 
struct Edge{
    int u,v;
    double val;
    friend bool operator<(const Edge&a,const Edge&b){
        return a.val<b.val;
    }
}arr[N*N];

inline double getDist(double x1,double y1,double x2,double y2){
    return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}

inline void init(){
    for(int i=0; i<n*n; ++i)
        f[i]=i,rank[i]=0;
}
int find(int x){
    int i,j=x;
    while(j!=f[j]) j=f[j];
    while(x!=j){
        i=f[x]; f[x]=j; x=i;
    }
    return j;
}
bool Union(int x, int y){
    int a=find(x), b=find(y);
    if(a==b)return false;
    if(rank[a]>rank[b])
        f[b]=a;
    else{
        if(rank[a]==rank[b])
            ++rank[b];
        f[a]=b;
    }
    return true;
}

int main(){
    int T;
    scanf("%d",&T);
    while(T--){
        scanf("%d%d",&m,&n);
        init();
        for(int i=1; i<=n; ++i)
            scanf("%lf%lf",&x[i],&y[i]);
        int pos=0;
        for(int i=1; i<=n; ++i){
            for(int j=i+1; j<=n; ++j)if(i!=j){
                arr[pos].u=i, arr[pos].v=j;
                arr[pos++].val = getDist(x[i],y[i],x[j],y[j]);
            }
        }
        sort(arr,arr+pos);
        int k=0;
        for(int i=0; i<pos; ++i){
            if(Union(arr[i].u,arr[i].v)){
                ans[k++] = arr[i].val;
            }
        }
        printf("%.2f\n", ans[k-m]);
    }
    return 0;
}



2.Prim

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define N 505
using namespace std;
double x[N], y[N], w[N][N], key[N], ans[N*N];
int n,m,pre[N],hash[N]; 

inline double getDist(double x1,double y1,double x2,double y2){
    return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}

double Prim(){
    memset(hash, 0, sizeof(hash));
    hash[1] = 1;
    for(int i=1; i<=n; ++i){
        key[i] = w[1][i]; pre[i] = 1;
    }
    int k=0;
    for(int i=1; i<n; ++i){
        int u=-1;
        for(int j=1; j<=n; ++j)if(!hash[j]){
            if(u==-1 || key[j]<key[u]) 
                u=j;
        }
        ans[k++] = key[u];
        hash[u] = 1;
        for(int j=1; j<=n; ++j)if(!hash[j]&&key[j]>w[u][j]){
            key[j]=w[u][j]; pre[j]=u;
        }
    }
    sort(ans, ans+k);
    return ans[k-m];
}

int main(){
    int T;
    scanf("%d",&T);
    while(T--){
        scanf("%d%d",&m,&n);
        for(int i=1; i<=n; ++i)
            scanf("%lf%lf",&x[i],&y[i]);
        int pos=0;
        memset(w, 0, sizeof(w));
        for(int i=1; i<=n; ++i){
            for(int j=i+1; j<=n; ++j){
                w[i][j]=w[j][i]=getDist(x[i],y[i],x[j],y[j]);
            }
        } 
        printf("%.2f\n", Prim());
    }
    return 0;
}


——  生命的意义,在于赋予它意义。

          
     原创 http://blog.youkuaiyun.com/shuangde800 , By   D_Double  (转载请标明)






### 亚北极地区冬季特征 亚北极地区的气候受到多种因素的影响,其中包括大气环流模式的作用。特别是北极大气振荡(Arctic Oscillation, AO),它与中高纬度区域的气候变化密切相关[^1]。当AO处于正相位时,极地涡旋增强,导致冷空气被限制在极地区域内,从而使得亚北极地区的冬季相对温和。而当AO处于负相位时,极地涡旋减弱,冷空气更容易向南扩散至亚北极及其他较低纬度地区。 亚北极地区的冬季通常表现出以下几个显著特点: 1. **低温环境** 冬季气温可以降至零下几十摄氏度,在某些极端情况下甚至更低。这种寒冷主要由长时间的日间短缩以及积雪覆盖引起的地面辐射冷却效应所致。 2. **降水量较少** 尽管存在一些局部差异,但总体而言,亚北极地区的冬季降水并不算多。这是因为该区域的大气湿度水平本身偏低,并且缺乏足够的水汽输送来支持大规模降水事件的发生。 3. **强风现象** 风速较大也是这一时期的重要气象特征之一。强劲的西北风吹拂过裸露的地表或冰雪表面,进一步加剧了体感温度下降的程度。 4. **生态适应性变化** 生物群落为了应对恶劣条件发展出了各种生存策略,比如动物进入冬眠状态或者迁徙离开;植物则通过落叶减少水分蒸发等方式维持生命活动最低需直至春季到来为止。 ```python def sub_arctic_winter_characteristics(): characteristics = [ "Extremely low temperatures", "Limited precipitation during winters", "Strong winds affecting perceived coldness", "Adaptations among flora/fauna to endure harsh conditions" ] return "\n".join(characteristics) print(sub_arctic_winter_characteristics()) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值