以下是基于SpringBoot+Vue.js的校园疫情防控系统开发指南和实现步骤,主要分为技术实现路线、功能开发重点、系统集成与测试三个核心部分:
一、技术实现路线 (超详细分步说明)
1. 环境搭建(Day 1-3)
# 后端工程(SpringBoot 2.7)
mvn archetype:generate -DgroupId=com.epidemic -DartifactId=epidemic-system
-DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false
# 前端工程(Vue3 + TypeScript)
npm init vue@latest
√ Add TypeScript? Yes
√ Add Pinia? Yes
√ Add Element Plus? Yes
√ Add ECharts? Yes
2. 基础架构搭建(Day 4-7)
核心配置文件示例:
// SecurityConfig.java 安全配置核心类
@Configuration
@EnableGlobalMethodSecurity(prePostEnabled = true)
public class SecurityConfig {
@Bean
public PasswordEncoder passwordEncoder() {
return new BCryptPasswordEncoder();
}
@Bean
public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
http
.csrf().disable()
.authorizeRequests()
.antMatchers("/api/public/**").permitAll()
.antMatchers("/api/student/**").hasRole("STUDENT")
.antMatchers("/api/teacher/**").hasAnyRole("TEACHER", "ADMIN")
.anyRequest().authenticated()
.and()
.addFilterBefore(jwtFilter(), UsernamePasswordAuthenticationFilter.class);
return http.build();
}
}
二、功能开发重点
1. 疫情数据中台(核心技术组合)
// EpidemicDataController.java 数据接口
@RestController
@RequestMapping("/api/epidemic")
public class EpidemicDataController {
@Autowired
private PythonBridgeService pythonService;
// 每日定时抓取(嵌入式Python调用)
@Scheduled(cron = "0 0 3 * * ?")
@GetMapping("/sync")
public Result<?> syncData() throws IOException {
String scriptPath = "python/tencent_crawler.py";
Process proc = Runtime.getRuntime().exec("python " + scriptPath);
// 处理数据回传(结合WebSocket推送更新)
return Result.ok("数据同步成功");
}
// 空间地理数据查询
@GetMapping("/heatmap")
public Result<List<HeatMapPoint>> getHeatMapData(@RequestParam String cityCode) {
List<HeatMapPoint> data = epidemicService.getCurrentHeatData(cityCode);
return Result.ok(data);
}
}
2. 智能识别接口(关键实现代码)
# 口罩检测模块(Python + OpenCV)
import cv2
def mask_detection(frame):
net = cv2.dnn.readNetFromCaffe("deploy.prototxt", "mask_detection.caffemodel")
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), (104.0, 177.0, 123.0))
net.setInput(blob)
detections = net.forward()
for i in range(0, detections.shape[2](@ref):
confidence = detections[0, 0, i, 2]
if confidence > 0.5:
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(x1, y1, x2, y2) = box.astype("int")
# 添加口罩状态标记逻辑
3. 可视化系统实现(前端重点代码)
<!-- EpidemicMap.vue 疫情地图组件 -->
<template>
<div ref="mapContainer" class="h-96 w-full"></div>
</template>
<script setup lang="ts">
import * as echarts from 'echarts'
import 'echarts-extension-amap'
const initMap = () => {
const chart = echarts.init(mapContainer.value)
chart.setOption({
amap: {
center: [116.397428, 39.90923],
zoom: 11
},
series: [{
type: 'scatter',
coordinateSystem: 'amap',
data: geoData.value // 从后端获取风险点位数据
}]
})
}
</script>
三、系统集成与测试
1. 接口调试方案
# Swagger配置类
@Bean
public Docket apiDocket() {
return new Docket(DocumentationType.SWAGGER_2)
.securitySchemmas(List.of(new ApiKey("JWT", "Authorization", "header")))
.select()
.apis(RequestHandlerSelectors.basePackage("com.epidemic.controller"))
.paths(PathSelectors.any())
.build();
}
动态压力测试
# JMeter测试脚本样例配置
线程组配置:
- 线程数:200
- 循环次数:∞
- 持续时间:300s
HTTP采样器:
- Path: /api/health/report
- Method: POST
- Body: {"userId": "${__Random(1,1000)}","temp": 36.5}
病毒式传播预测(SIR模型实现)
# R语言数学建模示例(可在Python中实现)
sir_model <- function(t, y, parameters) {
beta <- parameters["beta"]
gamma <- parameters["gamma"]
S <- y[1]
I <- y[2]
R <- y[3]
dSdt <- -beta * S * I
dIdt <- beta * S * I - gamma * I
dRdt <- gamma * I
return(list(c(dSdt, dIdt, dRdt)))
}
四、腐竹式开发建议
-
技术风险规避:
- 提前校验第三方API可用性(如地图服务)
- 对爬虫数据设置本地缓存机制
- 敏感数据加密存储(AES加密健康码信息)
-
论文加分素材:
- 实现对比传统的Excel登记方式,系统效率提升: | 功能项 | 传统耗时 | 系统耗时 | |--------------|----------|----------| | 每日健康打卡 | 45分钟 | 15秒 | | 出入审批 | 3天 | 2小时 |
-
答辩应对策略:
- 准备Docker环境快速展示系统
- 预先录制核心功能操作视频
- 绘制系统架构演进图(单体→微服务架构)
【附】所需依赖清单(重点项):
<!-- 后端pom.xml关键依赖 -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-websocket</artifactId>
</dependency>
<dependency>
<groupId>org.tensorflow</groupId>
<artifactId>tensorflow-core-platform</artifactId>
<version>0.4.1</version>
</dependency>
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
</dependency>
<!-- 前端package.json核心插件 -->
"dependencies": {
"@element-plus/icons-vue": "^2.0.6",
"vue-router": "^4.0.12",
"echarts": "^5.3.2",
"axios": "^0.24.0",
"mavon-editor": "^3.0.0"
}
jedis
“dependencies”: {
“@element-plus/icons-vue”: “^2.0.6”,
“vue-router”: “^4.0.12”,
“echarts”: “^5.3.2”,
“axios”: “^0.24.0”,
“mavon-editor”: “^3.0.0”
}
全量代码需结合具体院校业务场景进行调整,建议使用金蝶云·苍穹低代码平台快速生成基础CRUD功能,重点攻克核心算法模块的实现。