🎼个人主页:【Y小夜】
😎作者简介:一位双非学校的大三学生,编程爱好者,
专注于基础和实战分享,欢迎私信咨询!
🎈热门专栏:🎊【Python,Javaweb,Springboot】
感谢您的点赞、关注、评论、收藏、是对我最大的认可和支持!❤️
写此文章的目的只要用于记录自己在写黑马点评中关键知识点总结以及遇到的问题,分享给大家,大家如果有其他问题,可以留言或者私信!
目录
🎀项目介绍
短信登录
这一块我们会使用redis共享session来实现
商户查询缓存
通过本章节,我们会理解缓存击穿,缓存穿透,缓存雪崩等问题,让小伙伴的对于这些概念的理解不仅仅是停留在概念上,更是能在代码中看到对应的内容
优惠卷秒杀
通过本章节,我们可以学会Redis的计数器功能, 结合Lua完成高性能的redis操作,同时学会Redis分布式锁的原理,包括Redis的三种消息队列
附近的商户
我们利用Redis的GEOHash来完成对于地理坐标的操作
UV统计
主要是使用Redis来完成统计功能
用户签到
使用Redis的BitMap数据统计功能
好友关注
基于Set集合的关注、取消关注,共同关注等等功能,这一块知识咱们之前就讲过,这次我们在项目中来使用一下
打人探店
基于List来完成点赞列表的操作,同时基于SortedSet来完成点赞的排行榜功能
🎀项目导入
直接按视频中的流程导入就行,需要注意的是,需要更改MySQL和redis中的配置信息。导入前端工程时记得打开nginx。
运行项目有的时候,要打开开发者工具
🎀登录拦截功能
每个用户其实对应都是去找tomcat线程池中的一个线程来完成工作的, 使用完成后再进行回收,既然每个请求都是独立的,所以在每个用户去访问我们的工程时,我们可以使用threadlocal来做到线程隔离,每个线程操作自己的一份数据。
🎉threadlocal
看过threadLocal的源码,你会发现在threadLocal中,无论是他的put方法和他的get方法, 都是先从获得当前用户的线程,然后从线程中取出线程的成员变量map,只要线程不一样,map就不一样,所以可以通过这种方式来做到线程隔离。
🎀Session共享问题
每个tomcat中都有一份属于自己的session,假设用户第一次访问第一台tomcat,并且把自己的信息存放到第一台服务器的session中,但是第二次这个用户访问到了第二台tomcat,那么在第二台服务器上,肯定没有第一台服务器存放的session,所以此时 整个登录拦截功能就会出现问题,我们能如何解决这个问题呢?早期的方案是session拷贝,就是说虽然每个tomcat上都有不同的session,但是每当任意一台服务器的session修改时,都会同步给其他的Tomcat服务器的session,这样的话,就可以实现session的共享了
但是这种方案具有两个大问题
1、每台服务器中都有完整的一份session数据,服务器压力过大。
2、session拷贝数据时,可能会出现延迟
所以咱们后来采用的方案都是基于redis来完成,我们把session换成redis,redis数据本身就是共享的,就可以避免session共享的问题了
🎀Redis代替session的业务流程
🎉设计key的具体细节
我们可以使用String结构,就是一个简单的key,value键值对的方式,但是关于key的处理,session他是每个用户都有自己的session,但是redis的key是共享的,咱们就不能使用code了
在设计这个key的时候,我们之前讲过需要满足两点
1、key要具有唯一性
2、key要方便携带
如果我们采用phone:手机号这个的数据来存储当然是可以的,但是如果把这样的敏感数据存储到redis中并且从页面中带过来毕竟不太合适,所以我们在后台生成一个随机串token,然后让前端带来这个token就能完成我们的整体逻辑
🎉整体访问流程
当注册完成后,用户去登录会去校验用户提交的手机号和验证码,是否一致,如果一致,则根据手机号查询用户信息,不存在则新建,最后将用户数据保存到redis,并且生成token作为redis的key,当我们校验用户是否登录时,会去携带着token进行访问,从redis中取出token对应的value,判断是否存在这个数据,如果没有则拦截,如果存在则将其保存到threadLocal中,并且放行。
🎀解决状态登录刷新问题
🎉初始方案思路总结
这个拦截器他只是拦截需要被拦截的路径,假设当前用户访问了一些不需要拦截的路径,那么这个拦截器就不会生效,所以此时令牌刷新的动作实际上就不会执行,所以这个方案他是存在问题的。
🎉优化方案
既然之前的拦截器无法对不需要拦截的路径生效,那么我们可以添加一个拦截器,在第一个拦截器中拦截所有的路径,把第二个拦截器做的事情放入到第一个拦截器中,同时刷新令牌,因为第一个拦截器有了threadLocal的数据,所以此时第二个拦截器只需要判断拦截器中的user对象是否存在即可,完成整体刷新功能。
🎀缓存概念
🎉为什么要使用缓存
因为速度快,好用
缓存数据存储于代码中,而代码运行在内存中,内存的读写性能远高于磁盘,缓存可以大大降低用户访问并发量带来的服务器读写压力
实际开发过程中,企业的数据量,少则几十万,多则几千万,这么大数据量,如果没有缓存来作为"避震器",系统是几乎撑不住的,所以企业会大量运用到缓存技术;但是缓存也会增加代码复杂度和运营的成本:
🎉如何使用缓存
实际开发中,会构筑多级缓存来使系统运行速度进一步提升,例如:本地缓存与redis中的缓存并发使用
浏览器缓存:主要是存在于浏览器端的缓存
应用层缓存:可以分为tomcat本地缓存,比如之前提到的map,或者是使用redis作为缓存
数据库缓存:在数据库中有一片空间是 buffer pool,增改查数据都会先加载到mysql的缓存中
CPU缓存:当代计算机最大的问题是 cpu性能提升了,但内存读写速度没有跟上,所以为了适应当下的情况,增加了cpu的L1,L2,L3级的缓存
🎀商户缓存
标准的操作方式就是查询数据库之前先查询缓存,如果缓存数据存在,则直接从缓存中返回,如果缓存数据不存在,再查询数据库,然后将数据存入redis。
🎀商户类型缓存(作业)
🎉ShopTypeController
@RestController
@RequestMapping("/shop-type")
public class ShopTypeController {
@Resource
private IShopTypeService typeService;
@GetMapping("list")
public Result queryTypeList() {
return typeService.queryList();
}
}
🎉IShopTypeService
public interface IShopTypeService extends IService<ShopType> {
/**
* 查询店铺类型
* @return
*/
Result queryList();
}
🎉ShopTypeServiceImpl
@Service
public class ShopTypeServiceImpl extends ServiceImpl<ShopTypeMapper, ShopType> implements IShopTypeService {
@Resource
private StringRedisTemplate stringRedisTemplate;
/**
* 查询店铺类型
* @return
*/
@Override
public Result queryList() {
//从redis中查询
String typeJson = stringRedisTemplate.opsForValue().get(CACHE_SHOP_TYPE);
//判空
if (StrUtil.isNotBlank(typeJson)){
//如果不为空
List<ShopType> typeList = JSONUtil.toList(typeJson, ShopType.class);
return Result.ok(typeList);
}
//如果redis中为空,则查询数据库
List<ShopType> typeList = query().orderByAsc("sort").list();
//如果数据库为空
if (typeList==null){
return Result.fail("店铺类型不存在");
}
//将查询出的数据放入redis缓存
stringRedisTemplate.opsForValue().set(CACHE_SHOP_TYPE,JSONUtil.toJsonStr(typeList));
//返回数据
return Result.ok(typeList);
}
}
🎀缓存更新策略
缓存更新是redis为了节约内存而设计出来的一个东西,主要是因为内存数据宝贵,当我们向redis插入太多数据,此时就可能会导致缓存中的数据过多,所以redis会对部分数据进行更新,或者把他叫为淘汰更合适。
内存淘汰:redis自动进行,当redis内存达到咱们设定的max-memery的时候,会自动触发淘汰机制,淘汰掉一些不重要的数据(可以自己设置策略方式)
超时剔除:当我们给redis设置了过期时间ttl之后,redis会将超时的数据进行删除,方便咱们继续使用缓存
主动更新:我们可以手动调用方法把缓存删掉,通常用于解决缓存和数据库不一致问题
🎉数据库缓存不一致解决方案
由于我们的缓存的数据源来自于数据库,而数据库的数据是会发生变化的,因此,如果当数据库中数据发生变化,而缓存却没有同步,此时就会有一致性问题存在,其后果是:
用户使用缓存中的过时数据,就会产生类似多线程数据安全问题,从而影响业务,产品口碑等;怎么解决呢?有如下几种方案
Cache Aside Pattern 人工编码方式:缓存调用者在更新完数据库后再去更新缓存,也称之为双写方案
Read/Write Through Pattern : 由系统本身完成,数据库与缓存的问题交由系统本身去处理
Write Behind Caching Pattern :调用者只操作缓存,其他线程去异步处理数据库,实现最终一致
🎉数据库和缓存不一致采用什么方案
如果采用第一个方案,那么假设我们每次操作数据库后,都操作缓存,但是中间如果没有人查询,那么这个更新动作实际上只有最后一次生效,中间的更新动作意义并不大,我们可以把缓存删除,等待再次查询时,将缓存中的数据加载出来
-
删除缓存还是更新缓存?
-
更新缓存:每次更新数据库都更新缓存,无效写操作较多
-
删除缓存:更新数据库时让缓存失效,查询时再更新缓存
-
-
如何保证缓存与数据库的操作的同时成功或失败?
-
单体系统,将缓存与数据库操作放在一个事务
-
分布式系统,利用TCC等分布式事务方案
-
应该具体操作缓存还是操作数据库,我们应当是先操作数据库,再删除缓存,原因在于,如果你选择第一种方案,在两个线程并发来访问时,假设线程1先来,他先把缓存删了,此时线程2过来,他查询缓存数据并不存在,此时他写入缓存,当他写入缓存后,线程1再执行更新动作时,实际上写入的就是旧的数据,新的数据被旧数据覆盖了。
-
先操作缓存还是先操作数据库?
-
先删除缓存,再操作数据库
-
先操作数据库,再删除缓存
-
🎀缓存穿透问题的解决思路
缓存穿透 :缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库。
常见的解决方案有两种:
-
缓存空对象
-
优点:实现简单,维护方便
-
缺点:
-
额外的内存消耗
-
可能造成短期的不一致
-
-
-
布隆过滤
-
优点:内存占用较少,没有多余key
-
缺点:
-
实现复杂
-
存在误判可能
-
-
🎉缓存空对象思路分析
当我们客户端访问不存在的数据时,先请求redis,但是此时redis中没有数据,此时会访问到数据库,但是数据库中也没有数据,这个数据穿透了缓存,直击数据库,我们都知道数据库能够承载的并发不如redis这么高,如果大量的请求同时过来访问这种不存在的数据,这些请求就都会访问到数据库,简单的解决方案就是哪怕这个数据在数据库中也不存在,我们也把这个数据存入到redis中去,这样,下次用户过来访问这个不存在的数据,那么在redis中也能找到这个数据就不会进入到缓存了。
🎉布隆过滤
布隆过滤器其实采用的是哈希思想来解决这个问题,通过一个庞大的二进制数组,走哈希思想去判断当前这个要查询的这个数据是否存在,如果布隆过滤器判断存在,则放行,这个请求会去访问redis,哪怕此时redis中的数据过期了,但是数据库中一定存在这个数据,在数据库中查询出来这个数据后,再将其放入到redis中,
假设布隆过滤器判断这个数据不存在,则直接返回
这种方式优点在于节约内存空间,存在误判,误判原因在于:布隆过滤器走的是哈希思想,只要哈希思想,就可能存在哈希冲突。
🎀编码解决商品查询的缓存穿透问题
核心思路如下:
在原来的逻辑中,我们如果发现这个数据在mysql中不存在,直接就返回404了,这样是会存在缓存穿透问题的
现在的逻辑中:如果这个数据不存在,我们不会返回404 ,还是会把这个数据写入到Redis中,并且将value设置为空,欧当再次发起查询时,我们如果发现命中之后,判断这个value是否是null,如果是null,则是之前写入的数据,证明是缓存穿透数据,如果不是,则直接返回数据。
🎀缓存雪崩问题及解决思路
缓存雪崩:是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。
解决方案:
-
给不同的Key的TTL添加随机值
-
利用Redis集群提高服务的可用性
-
给缓存业务添加降级限流策略
-
给业务添加多级缓存
🎉缓存击穿问题及解决思路
缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。
常见的解决方案有两种:
-
互斥锁
-
逻辑过期
🎊使用锁来解决
因为锁能实现互斥性。假设线程过来,只能一个人一个人的来访问数据库,从而避免对于数据库访问压力过大,但这也会影响查询的性能,因为此时会让查询的性能从并行变成了串行,我们可以采用tryLock方法 + double check来解决这样的问题。
假设现在线程1过来访问,他查询缓存没有命中,但是此时他获得到了锁的资源,那么线程1就会一个人去执行逻辑,假设现在线程2过来,线程2在执行过程中,并没有获得到锁,那么线程2就可以进行到休眠,直到线程1把锁释放后,线程2获得到锁,然后再来执行逻辑,此时就能够从缓存中拿到数据了。
🎊逻辑过期方案
方案分析:我们之所以会出现这个缓存击穿问题,主要原因是在于我们对key设置了过期时间,假设我们不设置过期时间,其实就不会有缓存击穿的问题,但是不设置过期时间,这样数据不就一直占用我们内存了吗,我们可以采用逻辑过期方案。
我们把过期时间设置在 redis的value中,注意:这个过期时间并不会直接作用于redis,而是我们后续通过逻辑去处理。假设线程1去查询缓存,然后从value中判断出来当前的数据已经过期了,此时线程1去获得互斥锁,那么其他线程会进行阻塞,获得了锁的线程他会开启一个 线程去进行 以前的重构数据的逻辑,直到新开的线程完成这个逻辑后,才释放锁, 而线程1直接进行返回,假设现在线程3过来访问,由于线程线程2持有着锁,所以线程3无法获得锁,线程3也直接返回数据,只有等到新开的线程2把重建数据构建完后,其他线程才能走返回正确的数据。
这种方案巧妙在于,异步的构建缓存,缺点在于在构建完缓存之前,返回的都是脏数据。
🎉方案对比
互斥锁方案:由于保证了互斥性,所以数据一致,且实现简单,因为仅仅只需要加一把锁而已,也没其他的事情需要操心,所以没有额外的内存消耗,缺点在于有锁就有死锁问题的发生,且只能串行执行性能肯定受到影响
逻辑过期方案: 线程读取过程中不需要等待,性能好,有一个额外的线程持有锁去进行重构数据,但是在重构数据完成前,其他的线程只能返回之前的数据,且实现起来麻烦
🎀全局唯一ID
当用户抢购时,就会生成订单并保存到tb_voucher_order这张表中,而订单表如果使用数据库自增ID就存在一些问题:
-
id的规律性太明显
-
受单表数据量的限制
为了增加ID的安全性,我们可以不直接使用Redis自增的数值,而是拼接一些其它信息:
1bit,永远为0
时间戳:31bit,以秒为单位,可以使用69年
序列号:32bit,秒内的计数器,支持每秒产生2^32个不同ID
🎀Redis实现全局唯一Id
🎉新建RedisIdWorker
@Component
public class RedisIdWorker {
/**
* 开始时间戳
*/
private static final long BEGIN_TIMESTAMP = 1640995200L;
/**
* 序列号的位数
*/
private static final int COUNT_BITS = 32;
private StringRedisTemplate stringRedisTemplate;
public RedisIdWorker(StringRedisTemplate stringRedisTemplate) {
this.stringRedisTemplate = stringRedisTemplate;
}
public long nextId(String keyPrefix) {
// 1.生成时间戳
LocalDateTime now = LocalDateTime.now();
long nowSecond = now.toEpochSecond(ZoneOffset.UTC);
long timestamp = nowSecond - BEGIN_TIMESTAMP;
// 2.生成序列号
// 2.1.获取当前日期,精确到天
String date = now.format(DateTimeFormatter.ofPattern("yyyy:MM:dd"));
// 2.2.自增长
long count = stringRedisTemplate.opsForValue().increment("icr:" + keyPrefix + ":" + date);
// 3.拼接并返回
return timestamp << COUNT_BITS | count;
}
}
🎉测试类
@Test
void testIdWorker() throws InterruptedException {
CountDownLatch latch = new CountDownLatch(300);
Runnable task = () -> {
for (int i = 0; i < 100; i++) {
long id = redisIdWorker.nextId("order");
System.out.println("id = " + id);
}
latch.countDown();
};
long begin = System.currentTimeMillis();
for (int i = 0; i < 300; i++) {
es.submit(task);
}
latch.await();
long end = System.currentTimeMillis();
System.out.println("time = " + (end - begin));
}
🎊关于countdownlatch
countdownlatch名为信号枪:主要的作用是同步协调在多线程的等待于唤醒问题
我们如果没有CountDownLatch ,那么由于程序是异步的,当异步程序没有执行完时,主线程就已经执行完了,然后我们期望的是分线程全部走完之后,主线程再走,所以我们此时需要使用到CountDownLatch
CountDownLatch 中有两个最重要的方法
1、countDown
2、await
await 方法 是阻塞方法,我们担心分线程没有执行完时,main线程就先执行,所以使用await可以让main线程阻塞,那么什么时候main线程不再阻塞呢?当CountDownLatch 内部维护的 变量变为0时,就不再阻塞,直接放行,那么什么时候CountDownLatch 维护的变量变为0 呢,我们只需要调用一次countDown ,内部变量就减少1,我们让分线程和变量绑定, 执行完一个分线程就减少一个变量,当分线程全部走完,CountDownLatch 维护的变量就是0,此时await就不再阻塞,统计出来的时间也就是所有分线程执行完后的时间。
🎀添加优惠卷
这里需要使用我们的调试工具,添加以下信息(beginTime和endTime需要修改,不然前端页面看不到)
{
"shopId":1,
"title":"100元代金券",
"subTitle":"周一至周五均可使用",
"rules":"全场通用\\n无需预约\\n可无限叠加\\不兑现、不找零\\n仅限堂食",
"payValue":8000,
"actualValue":10000,
"type":1,
"stock":100,
"beginTime":"2024-04-10T10:09:17",
"endTime":"2024-04-11T12:09:04"
}
注意要在请求头中带Authorization参数否则会报401(登录后进入“我的”页面,看网络包有Authorization的值):
点击发送,然后就添加成功了
🎀实现秒杀下单
秒杀下单应该思考的内容:
下单时需要判断两点:
-
秒杀是否开始或结束,如果尚未开始或已经结束则无法下单
-
库存是否充足,不足则无法下单
下单核心逻辑分析:
当用户开始进行下单,我们应当去查询优惠卷信息,查询到优惠卷信息,判断是否满足秒杀条件
比如时间是否充足,如果时间充足,则进一步判断库存是否足够,如果两者都满足,则扣减库存,创建订单,然后返回订单id,如果有一个条件不满足则直接结束。
🎀库存超卖问题分析
假设线程1过来查询库存,判断出来库存大于1,正准备去扣减库存,但是还没有来得及去扣减,此时线程2过来,线程2也去查询库存,发现这个数量一定也大于1,那么这两个线程都会去扣减库存,最终多个线程相当于一起去扣减库存,此时就会出现库存的超卖问题。
悲观锁:
悲观锁可以实现对于数据的串行化执行,比如syn,和lock都是悲观锁的代表,同时,悲观锁中又可以再细分为公平锁,非公平锁,可重入锁,等等
乐观锁:
乐观锁:会有一个版本号,每次操作数据会对版本号+1,再提交回数据时,会去校验是否比之前的版本大1 ,如果大1 ,则进行操作成功,这套机制的核心逻辑在于,如果在操作过程中,版本号只比原来大1 ,那么就意味着操作过程中没有人对他进行过修改,他的操作就是安全的,如果不大1,则数据被修改过,当然乐观锁还有一些变种的处理方式比如cas
乐观锁的典型代表:就是cas,利用cas进行无锁化机制加锁,var5 是操作前读取的内存值,while中的var1+var2 是预估值,如果预估值 == 内存值,则代表中间没有被人修改过,此时就将新值去替换 内存值
🎀乐观锁解决超卖问题
🎉方案一
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1") //set stock = stock -1
.eq("voucher_id", voucherId).eq("stock",voucher.getStock()).update(); //where id = ? and stock = ?
以上逻辑的核心含义是:只要我扣减库存时的库存和之前我查询到的库存是一样的,就意味着没有人在中间修改过库存,那么此时就是安全的,但是以上这种方式通过测试发现会有很多失败的情况,失败的原因在于:在使用乐观锁过程中假设100个线程同时都拿到了100的库存,然后大家一起去进行扣减,但是100个人中只有1个人能扣减成功,其他的人在处理时,他们在扣减时,库存已经被修改过了,所以此时其他线程都会失败。
🎉方案二
之前的方式要修改前后都保持一致,但是这样我们分析过,成功的概率太低,所以我们的乐观锁需要变一下,改成stock大于0 即可
boolean success = seckillVoucherService.update()
.setSql("stock= stock -1")
.eq("voucher_id", voucherId).update().gt("stock",0); //where id = ? and stock > 0
🎀优惠券秒杀-一人一单
存在问题:现在的问题还是和之前一样,并发过来,查询数据库,都不存在订单,所以我们还是需要加锁,但是乐观锁比较适合更新数据,而现在是插入数据,所以我们需要使用悲观锁操作
注意:在这里提到了非常多的问题,我们需要慢慢的来思考,首先我们的初始方案是封装了一个createVoucherOrder方法,同时为了确保他线程安全,在方法上添加了一把synchronized 锁
@Transactional
public synchronized Result createVoucherOrder(Long voucherId) {
Long userId = UserHolder.getUser().getId();
// 5.1.查询订单
int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
// 5.2.判断是否存在
if (count > 0) {
// 用户已经购买过了
return Result.fail("用户已经购买过一次!");
}
// 6.扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock = stock - 1") // set stock = stock - 1
.eq("voucher_id", voucherId).gt("stock", 0) // where id = ? and stock > 0
.update();
if (!success) {
// 扣减失败
return Result.fail("库存不足!");
}
// 7.创建订单
VoucherOrder voucherOrder = new VoucherOrder();
// 7.1.订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
// 7.2.用户id
voucherOrder.setUserId(userId);
// 7.3.代金券id
voucherOrder.setVoucherId(voucherId);
save(voucherOrder);
// 7.返回订单id
return Result.ok(orderId);
}
但是这样添加锁,锁的粒度太粗了,在使用锁过程中,控制锁粒度 是一个非常重要的事情,因为如果锁的粒度太大,会导致每个线程进来都会锁住,所以我们需要去控制锁的粒度,以下这段代码需要修改为: intern() 这个方法是从常量池中拿到数据,如果我们直接使用userId.toString() 他拿到的对象实际上是不同的对象,new出来的对象,我们使用锁必须保证锁必须是同一把,所以我们需要使用intern()方法。
@Transactional
public Result createVoucherOrder(Long voucherId) {
Long userId = UserHolder.getUser().getId();
synchronized(userId.toString().intern()){
// 5.1.查询订单
int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
// 5.2.判断是否存在
if (count > 0) {
// 用户已经购买过了
return Result.fail("用户已经购买过一次!");
}
// 6.扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock = stock - 1") // set stock = stock - 1
.eq("voucher_id", voucherId).gt("stock", 0) // where id = ? and stock > 0
.update();
if (!success) {
// 扣减失败
return Result.fail("库存不足!");
}
// 7.创建订单
VoucherOrder voucherOrder = new VoucherOrder();
// 7.1.订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
// 7.2.用户id
voucherOrder.setUserId(userId);
// 7.3.代金券id
voucherOrder.setVoucherId(voucherId);
save(voucherOrder);
// 7.返回订单id
return Result.ok(orderId);
}
}
但是以上代码还是存在问题,问题的原因在于当前方法被spring的事务控制,如果你在方法内部加锁,可能会导致当前方法事务还没有提交,但是锁已经释放也会导致问题,所以我们选择将当前方法整体包裹起来,确保事务不会出现问题:如下:
但是以上做法依然有问题,因为你调用的方法,其实是this.的方式调用的,事务想要生效,还得利用代理来生效,所以这个地方,我们需要获得原始的事务对象, 来操作事务
🎀集群环境下的并发问题
由于现在我们部署了多个tomcat,每个tomcat都有一个属于自己的jvm,那么假设在服务器A的tomcat内部,有两个线程,这两个线程由于使用的是同一份代码,那么他们的锁对象是同一个,是可以实现互斥的,但是如果现在是服务器B的tomcat内部,又有两个线程,但是他们的锁对象写的虽然和服务器A一样,但是锁对象却不是同一个,所以线程3和线程4可以实现互斥,但是却无法和线程1和线程2实现互斥,这就是 集群环境下,syn锁失效的原因,在这种情况下,我们就需要使用分布式锁来解决这个问题。
🎀分布式锁基本原理和实现方式对比
分布式锁:满足分布式系统或集群模式下多进程可见并且互斥的锁。
分布式锁的核心思想就是让大家都使用同一把锁,只要大家使用的是同一把锁,那么我们就能锁住线程,不让线程进行,让程序串行执行,这就是分布式锁的核心思路
可见性:多个线程都能看到相同的结果,注意:这个地方说的可见性并不是并发编程中指的内存可见性,只是说多个进程之间都能感知到变化的意思
互斥:互斥是分布式锁的最基本的条件,使得程序串行执行
高可用:程序不易崩溃,时时刻刻都保证较高的可用性
高性能:由于加锁本身就让性能降低,所有对于分布式锁本身需要他就较高的加锁性能和释放锁性能
安全性:安全也是程序中必不可少的一环
Mysql:mysql本身就带有锁机制,但是由于mysql性能本身一般,所以采用分布式锁的情况下,其实使用mysql作为分布式锁比较少见
Redis:redis作为分布式锁是非常常见的一种使用方式,现在企业级开发中基本都使用redis或者zookeeper作为分布式锁,利用setnx这个方法,如果插入key成功,则表示获得到了锁,如果有人插入成功,其他人插入失败则表示无法获得到锁,利用这套逻辑来实现分布式锁
Zookeeper:zookeeper也是企业级开发中较好的一个实现分布式锁的方案,由于本套视频并不讲解zookeeper的原理和分布式锁的实现,所以不过多阐述
🎀Redis分布式锁的实现核心思路
实现分布式锁时需要实现的两个基本方法:
-
获取锁:
-
互斥:确保只能有一个线程获取锁
-
非阻塞:尝试一次,成功返回true,失败返回false
-
-
释放锁:
-
手动释放
-
超时释放:获取锁时添加一个超时时间
-
核心思路:
我们利用redis 的setNx 方法,当有多个线程进入时,我们就利用该方法,第一个线程进入时,redis 中就有这个key 了,返回了1,如果结果是1,则表示他抢到了锁,那么他去执行业务,然后再删除锁,退出锁逻辑,没有抢到锁的哥们,等待一定时间后重试即可
🎀实现分布式锁版本一
🎀Redis分布式锁误删情况说明
持有锁的线程在锁的内部出现了阻塞,导致他的锁自动释放,这时其他线程,线程2来尝试获得锁,就拿到了这把锁,然后线程2在持有锁执行过程中,线程1反应过来,继续执行,而线程1执行过程中,走到了删除锁逻辑,此时就会把本应该属于线程2的锁进行删除,这就是误删别人锁的情况说明
解决方案:解决方案就是在每个线程释放锁的时候,去判断一下当前这把锁是否属于自己,如果属于自己,则不进行锁的删除,假设还是上边的情况,线程1卡顿,锁自动释放,线程2进入到锁的内部执行逻辑,此时线程1反应过来,然后删除锁,但是线程1,一看当前这把锁不是属于自己,于是不进行删除锁逻辑,当线程2走到删除锁逻辑时,如果没有卡过自动释放锁的时间点,则判断当前这把锁是属于自己的,于是删除这把锁。
🎀解决Redis分布式锁误删问题
需求:修改之前的分布式锁实现,满足:在获取锁时存入线程标示(可以用UUID表示) 在释放锁时先获取锁中的线程标示,判断是否与当前线程标示一致
-
如果一致则释放锁
-
如果不一致则不释放锁
核心逻辑:在存入锁时,放入自己线程的标识,在删除锁时,判断当前这把锁的标识是不是自己存入的,如果是,则进行删除,如果不是,则不进行删除。
加锁
private static final String ID_PREFIX = UUID.randomUUID().toString(true) + "-";
@Override
public boolean tryLock(long timeoutSec) {
// 获取线程标示
String threadId = ID_PREFIX + Thread.currentThread().getId();
// 获取锁
Boolean success = stringRedisTemplate.opsForValue()
.setIfAbsent(KEY_PREFIX + name, threadId, timeoutSec, TimeUnit.SECONDS);
return Boolean.TRUE.equals(success);
}
释放锁
public void unlock() {
// 获取线程标示
String threadId = ID_PREFIX + Thread.currentThread().getId();
// 获取锁中的标示
String id = stringRedisTemplate.opsForValue().get(KEY_PREFIX + name);
// 判断标示是否一致
if(threadId.equals(id)) {
// 释放锁
stringRedisTemplate.delete(KEY_PREFIX + name);
}
}
🎀分布式锁的原子性问题
更为极端的误删逻辑说明:
线程1现在持有锁之后,在执行业务逻辑过程中,他正准备删除锁,而且已经走到了条件判断的过程中,比如他已经拿到了当前这把锁确实是属于他自己的,正准备删除锁,但是此时他的锁到期了,那么此时线程2进来,但是线程1他会接着往后执行,当他卡顿结束后,他直接就会执行删除锁那行代码,相当于条件判断并没有起到作用,这就是删锁时的原子性问题,之所以有这个问题,是因为线程1的拿锁,比锁,删锁,实际上并不是原子性的,我们要防止刚才的情况发生
🎀Lua脚本解决多条命令原子性问题
Redis提供了Lua脚本功能,在一个脚本中编写多条Redis命令,确保多条命令执行时的原子性。Lua是一种编程语言,它的基本语法大家可以参考网站:Lua 教程 | 菜鸟教程,这里重点介绍Redis提供的调用函数,我们可以使用lua去操作redis,又能保证他的原子性,这样就可以实现拿锁比锁删锁是一个原子性动作了,作为Java程序员这一块并不作一个简单要求,并不需要大家过于精通,只需要知道他有什么作用即可。
这里重点介绍Redis提供的调用函数,语法如下:
redis.call('命令名称', 'key', '其它参数', ...)
释放锁的业务流程是这样的
1、获取锁中的线程标示
2、判断是否与指定的标示(当前线程标示)一致
3、如果一致则释放锁(删除)
4、如果不一致则什么都不做
如果用Lua脚本来表示则是这样的:
最终我们操作redis的拿锁比锁删锁的lua脚本就会变成这样
-- 这里的 KEYS[1] 就是锁的key,这里的ARGV[1] 就是当前线程标示
-- 获取锁中的标示,判断是否与当前线程标示一致
if (redis.call('GET', KEYS[1]) == ARGV[1]) then
-- 一致,则删除锁
return redis.call('DEL', KEYS[1])
end
-- 不一致,则直接返回
return 0
🎀利用Java代码调用Lua脚本改造分布式锁
lua脚本本身并不需要大家花费太多时间去研究,只需要知道如何调用,大致是什么意思即可,所以在笔记中并不会详细的去解释这些lua表达式的含义。
我们的RedisTemplate中,可以利用execute方法去执行lua脚本,参数对应关系就如下图股
private static final DefaultRedisScript<Long> UNLOCK_SCRIPT;
static {
UNLOCK_SCRIPT = new DefaultRedisScript<>();
UNLOCK_SCRIPT.setLocation(new ClassPathResource("unlock.lua"));
UNLOCK_SCRIPT.setResultType(Long.class);
}
public void unlock() {
// 调用lua脚本
stringRedisTemplate.execute(
UNLOCK_SCRIPT,
Collections.singletonList(KEY_PREFIX + name),
ID_PREFIX + Thread.currentThread().getId());
}
经过以上代码改造后,我们就能够实现 拿锁比锁删锁的原子性动作了~
基于Redis的分布式锁实现思路:
-
利用set nx ex获取锁,并设置过期时间,保存线程标示
-
释放锁时先判断线程标示是否与自己一致,一致则删除锁
-
特性:
-
利用set nx满足互斥性
-
利用set ex保证故障时锁依然能释放,避免死锁,提高安全性
-
利用Redis集群保证高可用和高并发特性
-
-
🎀分布式锁-redission
基于setnx实现的分布式锁存在下面的问题:
重入问题:重入问题是指 获得锁的线程可以再次进入到相同的锁的代码块中,可重入锁的意义在于防止死锁,比如HashTable这样的代码中,他的方法都是使用synchronized修饰的,假如他在一个方法内,调用另一个方法,那么此时如果是不可重入的,不就死锁了吗?所以可重入锁他的主要意义是防止死锁,我们的synchronized和Lock锁都是可重入的。
不可重试:是指目前的分布式只能尝试一次,我们认为合理的情况是:当线程在获得锁失败后,他应该能再次尝试获得锁。
超时释放:我们在加锁时增加了过期时间,这样的我们可以防止死锁,但是如果卡顿的时间超长,虽然我们采用了lua表达式防止删锁的时候,误删别人的锁,但是毕竟没有锁住,有安全隐患
主从一致性: 如果Redis提供了主从集群,当我们向集群写数据时,主机需要异步的将数据同步给从机,而万一在同步过去之前,主机宕机了,就会出现死锁问题。
Redisson是一个在Redis的基础上实现的Java驻内存数据网格(In-Memory Data Grid)。它不仅提供了一系列的分布式的Java常用对象,还提供了许多分布式服务,其中就包含了各种分布式锁的实现。
Redission提供了分布式锁的多种多样的功能
🎀分布式锁-Redission快速入门
引入依赖
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson</artifactId>
<version>3.13.6</version>
</dependency>
配置Redisson客户端:
@Configuration
public class RedissonConfig {
@Bean
public RedissonClient redissonClient(){
// 配置
Config config = new Config();
config.useSingleServer().setAddress("redis://192.168.150.101:6379")
.setPassword("123321");
// 创建RedissonClient对象
return Redisson.create(config);
}
}
如何使用Redission的分布式锁
@Resource
private RedissionClient redissonClient;
@Test
void testRedisson() throws Exception{
//获取锁(可重入),指定锁的名称
RLock lock = redissonClient.getLock("anyLock");
//尝试获取锁,参数分别是:获取锁的最大等待时间(期间会重试),锁自动释放时间,时间单位
boolean isLock = lock.tryLock(1,10,TimeUnit.SECONDS);
//判断获取锁成功
if(isLock){
try{
System.out.println("执行业务");
}finally{
//释放锁
lock.unlock();
}
}
}
🎀分布式锁-redission可重入锁原理
在Lock锁中,他是借助于底层的一个voaltile的一个state变量来记录重入的状态的,比如当前没有人持有这把锁,那么state=0,假如有人持有这把锁,那么state=1,如果持有这把锁的人再次持有这把锁,那么state就会+1 ,如果是对于synchronized而言,他在c语言代码中会有一个count,原理和state类似,也是重入一次就加一,释放一次就-1 ,直到减少成0 时,表示当前这把锁没有被人持有。
在redission中,我们的也支持支持可重入锁
在分布式锁中,他采用hash结构用来存储锁,其中大key表示表示这把锁是否存在,用小key表示当前这把锁被哪个线程持有,所以接下来我们一起分析一下当前的这个lua表达式
这个地方一共有3个参数
KEYS[1] : 锁名称
ARGV[1]: 锁失效时间
ARGV[2]: id + ":" + threadId; 锁的小key
exists: 判断数据是否存在 name:是lock是否存在,如果==0,就表示当前这把锁不存在
redis.call('hset', KEYS[1], ARGV[2], 1);此时他就开始往redis里边去写数据 ,写成一个hash结构
Lock{
id + ":" + threadId : 1
}
如果当前这把锁存在,则第一个条件不满足,再判断
redis.call('hexists', KEYS[1], ARGV[2]) == 1
此时需要通过大key+小key判断当前这把锁是否是属于自己的,如果是自己的,则进行
redis.call('hincrby', KEYS[1], ARGV[2], 1)
将当前这个锁的value进行+1 ,redis.call('pexpire', KEYS[1], ARGV[1]); 然后再对其设置过期时间,如果以上两个条件都不满足,则表示当前这把锁抢锁失败,最后返回pttl,即为当前这把锁的失效时间
如果小伙帮们看了前边的源码, 你会发现他会去判断当前这个方法的返回值是否为null,如果是null,则对应则前两个if对应的条件,退出抢锁逻辑,如果返回的不是null,即走了第三个分支,在源码处会进行while(true)的自旋抢锁。
🎀分布式锁-redission锁重试和WatchDog机制
说明:由于课程中已经说明了有关tryLock的源码解析以及其看门狗原理,所以笔者在这里给大家分析lock()方法的源码解析,希望大家在学习过程中,能够掌握更多的知识
抢锁过程中,获得当前线程,通过tryAcquire进行抢锁,该抢锁逻辑和之前逻辑相同
1、先判断当前这把锁是否存在,如果不存在,插入一把锁,返回null
2、判断当前这把锁是否是属于当前线程,如果是,则返回null
所以如果返回是null,则代表着当前这哥们已经抢锁完毕,或者可重入完毕,但是如果以上两个条件都不满足,则进入到第三个条件,返回的是锁的失效时间,同学们可以自行往下翻一点点,你能发现有个while( true) 再次进行tryAcquire进行抢锁
long threadId = Thread.currentThread().getId();
Long ttl = tryAcquire(-1, leaseTime, unit, threadId);
// lock acquired
if (ttl == null) {
return;
}
接下来会有一个条件分支,因为lock方法有重载方法,一个是带参数,一个是不带参数,如果带带参数传入的值是-1,如果传入参数,则leaseTime是他本身,所以如果传入了参数,此时leaseTime != -1 则会进去抢锁,抢锁的逻辑就是之前说的那三个逻辑
if (leaseTime != -1) {
return tryLockInnerAsync(waitTime, leaseTime, unit, threadId, RedisCommands.EVAL_LONG);
}
如果是没有传入时间,则此时也会进行抢锁, 而且抢锁时间是默认看门狗时间 commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout()
ttlRemainingFuture.onComplete((ttlRemaining, e) 这句话相当于对以上抢锁进行了监听,也就是说当上边抢锁完毕后,此方法会被调用,具体调用的逻辑就是去后台开启一个线程,进行续约逻辑,也就是看门狗线程
RFuture<Long> ttlRemainingFuture = tryLockInnerAsync(waitTime,
commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(),
TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG);
ttlRemainingFuture.onComplete((ttlRemaining, e) -> {
if (e != null) {
return;
}
// lock acquired
if (ttlRemaining == null) {
scheduleExpirationRenewal(threadId);
}
});
return ttlRemainingFuture;
指的是:通过参数2,参数3 去描述什么时候去做参数1的事情,现在的情况是:10s之后去做参数一的事情
因为锁的失效时间是30s,当10s之后,此时这个timeTask 就触发了,他就去进行续约,把当前这把锁续约成30s,如果操作成功,那么此时就会递归调用自己,再重新设置一个timeTask(),于是再过10s后又再设置一个timerTask,完成不停的续约
🎀分布式锁-redisson锁的MutiLock原理
为了提高redis的可用性,我们会搭建集群或者主从,现在以主从为例
此时我们去写命令,写在主机上, 主机会将数据同步给从机,但是假设在主机还没有来得及把数据写入到从机去的时候,此时主机宕机,哨兵会发现主机宕机,并且选举一个slave变成master,而此时新的master中实际上并没有锁信息,此时锁信息就已经丢掉了。
为了解决这个问题,redission提出来了MutiLock锁,使用这把锁咱们就不使用主从了,每个节点的地位都是一样的, 这把锁加锁的逻辑需要写入到每一个主丛节点上,只有所有的服务器都写入成功,此时才是加锁成功,假设现在某个节点挂了,那么他去获得锁的时候,只要有一个节点拿不到,都不能算是加锁成功,就保证了加锁的可靠性。
🎀异步秒杀思路
我们现在来看看整体思路:当用户下单之后,判断库存是否充足只需要导redis中去根据key找对应的value是否大于0即可,如果不充足,则直接结束,如果充足,继续在redis中判断用户是否可以下单,如果set集合中没有这条数据,说明他可以下单,如果set集合中没有这条记录,则将userId和优惠卷存入到redis中,并且返回0,整个过程需要保证是原子性的,我们可以使用lua来操作
当以上判断逻辑走完之后,我们可以判断当前redis中返回的结果是否是0 ,如果是0,则表示可以下单,则将之前说的信息存入到到queue中去,然后返回,然后再来个线程异步的下单,前端可以通过返回的订单id来判断是否下单成功。
🎀Redis完成秒杀资格判断
求:
-
新增秒杀优惠券的同时,将优惠券信息保存到Redis中
-
基于Lua脚本,判断秒杀库存、一人一单,决定用户是否抢购成功
-
如果抢购成功,将优惠券id和用户id封装后存入阻塞队列
-
开启线程任务,不断从阻塞队列中获取信息,实现异步下单功能
完整lua表达式
-- 1.参数列表
-- 1.1.优惠券id
local voucherId = ARGV[1]
-- 1.2.用户id
local userId = ARGV[2]
-- 1.3.订单id
local orderId = ARGV[3]
-- 2.数据key
-- 2.1.库存key
local stockKey = 'seckill:stock:' .. voucherId
-- 2.2.订单key
local orderKey = 'seckill:order:' .. voucherId
-- 3.脚本业务
-- 3.1.判断库存是否充足 get stockKey
if(tonumber(redis.call('get', stockKey)) <= 0) then
-- 3.2.库存不足,返回1
return 1
end
-- 3.2.判断用户是否下单 SISMEMBER orderKey userId
if(redis.call('sismember', orderKey, userId) == 1) then
-- 3.3.存在,说明是重复下单,返回2
return 2
end
-- 3.4.扣库存 incrby stockKey -1
redis.call('incrby', stockKey, -1)
-- 3.5.下单(保存用户)sadd orderKey userId
redis.call('sadd', orderKey, userId)
-- 3.6.发送消息到队列中, XADD stream.orders * k1 v1 k2 v2 ...
redis.call('xadd', 'stream.orders', '*', 'userId', userId, 'voucherId', voucherId, 'id', orderId)
return 0
🎀秒杀优化-基于阻塞队列实现秒杀优化
思路:修改下单动作,现在我们去下单时,是通过lua表达式去原子执行判断逻辑,如果判断我出来不为0 ,则要么是库存不足,要么是重复下单,返回错误信息,如果是0,则把下单的逻辑保存到队列中去,然后异步执行 。
小总结:
秒杀业务的优化思路是什么?
-
先利用Redis完成库存余量、一人一单判断,完成抢单业务
-
再将下单业务放入阻塞队列,利用独立线程异步下单
-
基于阻塞队列的异步秒杀存在哪些问题?
-
内存限制问题
-
数据安全问题
-
🎀认识消息队列
什么是消息队列:字面意思就是存放消息的队列。最简单的消息队列模型包括3个角色:
-
消息队列:存储和管理消息,也被称为消息代理(Message Broker)
-
生产者:发送消息到消息队列
-
消费者:从消息队列获取消息并处理消息
🎀基于List实现消息队列
基于List结构模拟消息队列
消息队列(Message Queue),字面意思就是存放消息的队列。而Redis的list数据结构是一个双向链表,很容易模拟出队列效果。
队列是入口和出口不在一边,因此我们可以利用:LPUSH 结合 RPOP、或者 RPUSH 结合 LPOP来实现。 不过要注意的是,当队列中没有消息时RPOP或LPOP操作会返回null,并不像JVM的阻塞队列那样会阻塞并等待消息。因此这里应该使用BRPOP或者BLPOP来实现阻塞效果。
基于List的消息队列有哪些优缺点? 优点:
-
利用Redis存储,不受限于JVM内存上限
-
基于Redis的持久化机制,数据安全性有保证
-
可以满足消息有序性
缺点:
-
无法避免消息丢失
-
只支持单消费者
🎀基于PubSub的消息队列
PubSub(发布订阅)是Redis2.0版本引入的消息传递模型。顾名思义,消费者可以订阅一个或多个channel,生产者向对应channel发送消息后,所有订阅者都能收到相关消息。
SUBSCRIBE channel [channel] :订阅一个或多个频道 PUBLISH channel msg :向一个频道发送消息 PSUBSCRIBE pattern[pattern] :订阅与pattern格式匹配的所有频道
基于PubSub的消息队列有哪些优缺点? 优点:
-
采用发布订阅模型,支持多生产、多消费
缺点:
-
不支持数据持久化
-
无法避免消息丢失
-
消息堆积有上限,超出时数据丢失
🎀基于Stream的消息队列
在业务开发中,我们可以循环的调用XREAD阻塞方式来查询最新消息,从而实现持续监听队列的效果,伪代码如下
注意:当我们指定起始ID为$时,代表读取最新的消息,如果我们处理一条消息的过程中,又有超过1条以上的消息到达队列,则下次获取时也只能获取到最新的一条,会出现漏读消息的问题
STREAM类型消息队列的XREAD命令特点:
-
消息可回溯
-
一个消息可以被多个消费者读取
-
可以阻塞读取
-
有消息漏读的风险
🎀基于Stream的消息队列-消费者组
消费者组(Consumer Group):将多个消费者划分到一个组中,监听同一个队列。具备下列特点:
创建消费者组:
key:队列名称 groupName:消费者组名称 ID:起始ID标示,$代表队列中最后一个消息,0则代表队列中第一个消息 MKSTREAM:队列不存在时自动创建队列
">":从下一个未消费的消息开始
消费者监听消息的基本思路:
命令特点:
-
消息可回溯
-
可以多消费者争抢消息,加快消费速度
-
可以阻塞读取
-
没有消息漏读的风险
-
有消息确认机制,保证消息至少被消费一次
🎀发布探店笔记
注意:同学们在操作时,需要修改SystemConstants.IMAGE_UPLOAD_DIR 自己图片所在的地址,在实际开发中图片一般会放在nginx上或者是云存储上。
🎀查看探店笔记
🎀点赞功能
需求:
-
同一个用户只能点赞一次,再次点击则取消点赞
-
如果当前用户已经点赞,则点赞按钮高亮显示(前端已实现,判断字段Blog类的isLike属性)
实现步骤:
-
给Blog类中添加一个isLike字段,标示是否被当前用户点赞
-
修改点赞功能,利用Redis的set集合判断是否点赞过,未点赞过则点赞数+1,已点赞过则点赞数-1
-
修改根据id查询Blog的业务,判断当前登录用户是否点赞过,赋值给isLike字段
-
修改分页查询Blog业务,判断当前登录用户是否点赞过,赋值给isLike字段
为什么采用set集合:
因为我们的数据是不能重复的,当用户操作过之后,无论他怎么操作,都是
🎀点赞排行榜
在探店笔记的详情页面,应该把给该笔记点赞的人显示出来,比如最早点赞的TOP5,形成点赞排行榜:
之前的点赞是放到set集合,但是set集合是不能排序的,所以这个时候,咱们可以采用一个可以排序的set集合,就是咱们的sortedSet
🎀关注和取消关注
实现思路:
需求:基于该表数据结构,实现两个接口:
-
关注和取关接口
-
判断是否关注的接口
🎀共同关注
想要去看共同关注的好友,需要首先进入到这个页面,这个页面会发起两个请求
1、去查询用户的详情
2、去查询用户的笔记
以上两个功能和共同关注没有什么关系,大家可以自行将笔记中的代码拷贝到idea中就可以实现这两个功能了,我们的重点在于共同关注功能。
接下来我们来看看共同关注如何实现:
需求:利用Redis中恰当的数据结构,实现共同关注功能。在博主个人页面展示出当前用户与博主的共同关注呢。
当然是使用我们之前学习过的set集合咯,在set集合中,有交集并集补集的api,我们可以把两人的关注的人分别放入到一个set集合中,然后再通过api去查看这两个set集合中的交集数据。
🎀Feed流实现方案
当我们关注了用户后,这个用户发了动态,那么我们应该把这些数据推送给用户,这个需求,其实我们又把他叫做Feed流,关注推送也叫做Feed流,直译为投喂。为用户持续的提供“沉浸式”的体验,通过无限下拉刷新获取新的信息。
对于传统的模式的内容解锁:我们是需要用户去通过搜索引擎或者是其他的方式去解锁想要看的内容
对于新型的Feed流的的效果:不需要我们用户再去推送信息,而是系统分析用户到底想要什么,然后直接把内容推送给用户,从而使用户能够更加的节约时间,不用主动去寻找。
Feed流的实现有两种模式:
Feed流产品有两种常见模式: Timeline:不做内容筛选,简单的按照内容发布时间排序,常用于好友或关注。例如朋友圈
-
优点:信息全面,不会有缺失。并且实现也相对简单
-
缺点:信息噪音较多,用户不一定感兴趣,内容获取效率低
智能排序:利用智能算法屏蔽掉违规的、用户不感兴趣的内容。推送用户感兴趣信息来吸引用户
-
优点:投喂用户感兴趣信息,用户粘度很高,容易沉迷
-
缺点:如果算法不精准,可能起到反作用 本例中的个人页面,是基于关注的好友来做Feed流,因此采用Timeline的模式。该模式的实现方案有三种:
我们本次针对好友的操作,采用的就是Timeline的方式,只需要拿到我们关注用户的信息,然后按照时间排序即可
,因此采用Timeline的模式。该模式的实现方案有三种:
-
拉模式
-
推模式
-
推拉结合
🎉拉模式
拉模式:也叫做读扩散
该模式的核心含义就是:当张三和李四和王五发了消息后,都会保存在自己的邮箱中,假设赵六要读取信息,那么他会从读取他自己的收件箱,此时系统会从他关注的人群中,把他关注人的信息全部都进行拉取,然后在进行排序
优点:比较节约空间,因为赵六在读信息时,并没有重复读取,而且读取完之后可以把他的收件箱进行清楚。
缺点:比较延迟,当用户读取数据时才去关注的人里边去读取数据,假设用户关注了大量的用户,那么此时就会拉取海量的内容,对服务器压力巨大。
🎉推模式
推模式是没有写邮箱的,当张三写了一个内容,此时会主动的把张三写的内容发送到他的粉丝收件箱中去,假设此时李四再来读取,就不用再去临时拉取了
优点:时效快,不用临时拉取
缺点:内存压力大,假设一个大V写信息,很多人关注他, 就会写很多分数据到粉丝那边去
🎉推拉结合模式
推拉结合模式:也叫做读写混合,兼具推和拉两种模式的优点。
推拉模式是一个折中的方案,站在发件人这一段,如果是个普通的人,那么我们采用写扩散的方式,直接把数据写入到他的粉丝中去,因为普通的人他的粉丝关注量比较小,所以这样做没有压力,如果是大V,那么他是直接将数据先写入到一份到发件箱里边去,然后再直接写一份到活跃粉丝收件箱里边去,现在站在收件人这端来看,如果是活跃粉丝,那么大V和普通的人发的都会直接写入到自己收件箱里边来,而如果是普通的粉丝,由于他们上线不是很频繁,所以等他们上线时,再从发件箱里边去拉信息。
🎀推送到粉丝收件箱
需求:
-
修改新增探店笔记的业务,在保存blog到数据库的同时,推送到粉丝的收件箱
-
收件箱满足可以根据时间戳排序,必须用Redis的数据结构实现
-
查询收件箱数据时,可以实现分页查询
Feed流中的数据会不断更新,所以数据的角标也在变化,因此不能采用传统的分页模式。
传统了分页在feed流是不适用的,因为我们的数据会随时发生变化
假设在t1 时刻,我们去读取第一页,此时page = 1 ,size = 5 ,那么我们拿到的就是10~6 这几条记录,假设现在t2时候又发布了一条记录,此时t3 时刻,我们来读取第二页,读取第二页传入的参数是page=2 ,size=5 ,那么此时读取到的第二页实际上是从6 开始,然后是6~2 ,那么我们就读取到了重复的数据,所以feed流的分页,不能采用原始方案来做
Feed流的滚动分页
我们需要记录每次操作的最后一条,然后从这个位置开始去读取数据
举个例子:我们从t1时刻开始,拿第一页数据,拿到了10~6,然后记录下当前最后一次拿取的记录,就是6,t2时刻发布了新的记录,此时这个11放到最顶上,但是不会影响我们之前记录的6,此时t3时刻来拿第二页,第二页这个时候拿数据,还是从6后一点的5去拿,就拿到了5-1的记录。我们这个地方可以采用sortedSet来做,可以进行范围查询,并且还可以记录当前获取数据时间戳最小值,就可以实现滚动分页了
🎀实现分页查询收邮箱
需求:在个人主页的“关注”卡片中,查询并展示推送的Blog信息:
具体操作如下:
1、每次查询完成后,我们要分析出查询出数据的最小时间戳,这个值会作为下一次查询的条件
2、我们需要找到与上一次查询相同的查询个数作为偏移量,下次查询时,跳过这些查询过的数据,拿到我们需要的数据
综上:我们的请求参数中就需要携带 lastId:上一次查询的最小时间戳 和偏移量这两个参数。
这两个参数第一次会由前端来指定,以后的查询就根据后台结果作为条件,再次传递到后台。
🎀GEO数据结构的基本用法
GEO就是Geolocation的简写形式,代表地理坐标。Redis在3.2版本中加入了对GEO的支持,允许存储地理坐标信息,帮助我们根据经纬度来检索数据。常见的命令有:
-
GEOADD:添加一个地理空间信息,包含:经度(longitude)、纬度(latitude)、值(member)
-
GEODIST:计算指定的两个点之间的距离并返回
-
GEOHASH:将指定member的坐标转为hash字符串形式并返回
-
GEOPOS:返回指定member的坐标
-
GEORADIUS:指定圆心、半径,找到该圆内包含的所有member,并按照与圆心之间的距离排序后返回。6.以后已废弃
-
GEOSEARCH:在指定范围内搜索member,并按照与指定点之间的距离排序后返回。范围可以是圆形或矩形。6.2.新功能
-
GEOSEARCHSTORE:与GEOSEARCH功能一致,不过可以把结果存储到一个指定的key。 6.2.新功能
🎀导入店铺数据到GEO
当我们点击美食之后,会出现一系列的商家,商家中可以按照多种排序方式,我们此时关注的是距离,这个地方就需要使用到我们的GEO,向后台传入当前app收集的地址(我们此处是写死的) ,以当前坐标作为圆心,同时绑定相同的店家类型type,以及分页信息,把这几个条件传入后台,后台查询出对应的数据再返回。
我们要做的事情是:将数据库表中的数据导入到redis中去,redis中的GEO,GEO在redis中就一个menber和一个经纬度,我们把x和y轴传入到redis做的经纬度位置去,但我们不能把所有的数据都放入到menber中去,毕竟作为redis是一个内存级数据库,如果存海量数据,redis还是力不从心,所以我们在这个地方存储他的id即可。
但是这个时候还有一个问题,就是在redis中并没有存储type,所以我们无法根据type来对数据进行筛选,所以我们可以按照商户类型做分组,类型相同的商户作为同一组,以typeId为key存入同一个GEO集合中即可
🎀实现附近商户功能
SpringDataRedis的2.3.9版本并不支持Redis 6.2提供的GEOSEARCH命令,因此我们需要提示其版本,修改自己的POM
第一步:导入pom
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
<exclusions>
<exclusion>
<artifactId>spring-data-redis</artifactId>
<groupId>org.springframework.data</groupId>
</exclusion>
<exclusion>
<artifactId>lettuce-core</artifactId>
<groupId>io.lettuce</groupId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redis</artifactId>
<version>2.6.2</version>
</dependency>
<dependency>
<groupId>io.lettuce</groupId>
<artifactId>lettuce-core</artifactId>
<version>6.1.6.RELEASE</version>
</dependency>
🎀BitMap功能演示
用户一次签到,就是一条记录,假如有1000万用户,平均每人每年签到次数为10次,则这张表一年的数据量为 1亿条
每签到一次需要使用(8 + 8 + 1 + 1 + 3 + 1)共22 字节的内存,一个月则最多需要600多字节
我们如何能够简化一点呢?其实可以考虑小时候一个挺常见的方案,就是小时候,咱们准备一张小小的卡片,你只要签到就打上一个勾,我最后判断你是否签到,其实只需要到小卡片上看一看就知道了
我们可以采用类似这样的方案来实现我们的签到需求。
我们按月来统计用户签到信息,签到记录为1,未签到则记录为0.
把每一个bit位对应当月的每一天,形成了映射关系。用0和1标示业务状态,这种思路就称为位图(BitMap)。这样我们就用极小的空间,来实现了大量数据的表示
Redis中是利用string类型数据结构实现BitMap,因此最大上限是512M,转换为bit则是 2^32个bit位。
BitMap的操作命令有:
-
SETBIT:向指定位置(offset)存入一个0或1
-
GETBIT :获取指定位置(offset)的bit值
-
BITCOUNT :统计BitMap中值为1的bit位的数量
-
BITFIELD :操作(查询、修改、自增)BitMap中bit数组中的指定位置(offset)的值
-
BITFIELD_RO :获取BitMap中bit数组,并以十进制形式返回
-
BITOP :将多个BitMap的结果做位运算(与 、或、异或)
-
BITPOS :查找bit数组中指定范围内第一个0或1出现的位置
🎀实现签到功能
需求:实现签到接口,将当前用户当天签到信息保存到Redis中
思路:我们可以把年和月作为bitMap的key,然后保存到一个bitMap中,每次签到就到对应的位上把数字从0变成1,只要对应是1,就表明说明这一天已经签到了,反之则没有签到。
我们通过接口文档发现,此接口并没有传递任何的参数,没有参数怎么确实是哪一天签到呢?这个很容易,可以通过后台代码直接获取即可,然后到对应的地址上去修改bitMap。
🎀签到统计
有用户有时间我们就可以组织出对应的key,此时就能找到这个用户截止这天的所有签到记录,再根据这套算法,就能统计出来他连续签到的次数了
🎀关于使用bitmap来解决缓存穿透的方案
回顾缓存穿透:
发起了一个数据库不存在的,redis里边也不存在的数据,通常你可以把他看成一个攻击
解决方案:
-
判断id<0
-
如果数据库是空,那么就可以直接往redis里边把这个空数据缓存起来
第一种解决方案:遇到的问题是如果用户访问的是id不存在的数据,则此时就无法生效
第二种解决方案:遇到的问题是:如果是不同的id那就可以防止下次过来直击数据
所以我们如何解决呢?
我们可以将数据库的数据,所对应的id写入到一个list集合中,当用户过来访问的时候,我们直接去判断list中是否包含当前的要查询的数据,如果说用户要查询的id数据并不在list集合中,则直接返回,如果list中包含对应查询的id数据,则说明不是一次缓存穿透数据,则直接放行。
现在的问题是这个主键其实并没有那么短,而是很长的一个 主键
哪怕你单独去提取这个主键,但是在11年左右,淘宝的商品总量就已经超过10亿个
所以如果采用以上方案,这个list也会很大,所以我们可以使用bitmap来减少list的存储空间
我们可以把list数据抽象成一个非常大的bitmap,我们不再使用list,而是将db中的id数据利用哈希思想,比如:
id % bitmap.size = 算出当前这个id对应应该落在bitmap的哪个索引上,然后将这个值从0变成1,然后当用户来查询数据时,此时已经没有了list,让用户用他查询的id去用相同的哈希算法, 算出来当前这个id应当落在bitmap的哪一位,然后判断这一位是0,还是1,如果是0则表明这一位上的数据一定不存在, 采用这种方式来处理,需要重点考虑一个事情,就是误差率,所谓的误差率就是指当发生哈希冲突的时候,产生的误差。
🎀HyperLogLog
首先我们搞懂两个概念:
* UV:全称Unique Visitor,也叫独立访客量,是指通过互联网访问、浏览这个网页的自然人。1天内同一个用户多次访问该网站,只记录1次。
* PV:全称Page View,也叫页面访问量或点击量,用户每访问网站的一个页面,记录1次PV,用户多次打开页面,则记录多次PV。往往用来衡量网站的流量。
通常来说UV会比PV大很多,所以衡量同一个网站的访问量,我们需要综合考虑很多因素,所以我们只是单纯的把这两个值作为一个参考值
UV统计在服务端做会比较麻烦,因为要判断该用户是否已经统计过了,需要将统计过的用户信息保存。但是如果每个访问的用户都保存到Redis中,数据量会非常恐怖,那怎么处理呢?
Hyperloglog(HLL)是从Loglog算法派生的概率算法,用于确定非常大的集合的基数,而不需要存储其所有值。相关算法原理大家可以参考:https://juejin.cn/post/6844903785744056333#heading-0
Redis中的HLL是基于string结构实现的,单个HLL的内存**永远小于16kb**,**内存占用低**的令人发指!作为代价,其测量结果是概率性的,**有小于0.81%的误差**。不过对于UV统计来说,这完全可以忽略。
🎀测试百万数据的统计
测试思路:我们直接利用单元测试,向HyperLogLog中添加100万条数据,看看内存占用和统计效果如何