LeetCodeConvert Sorted List to Binary Search Tree

本文详细介绍了如何将链表转化为二叉搜索树的方法,包括链表的复制、中间节点的查找以及递归实现的过程。
 /*这道题与Convert Sorted Array to Binary Search Tree很类似,可以采用
 相同的方法解题,但是链表不支持随机访问,所以每次都需要查找链表的中间节点。
 同时,还有一个需要注意的地方:需要将输入的链表复制出来处理,否则会报错。*/
class Solution {
public:
    TreeNode* sortedListToBST(ListNode* head) {
        if(head == nullptr) return nullptr;
        //复制原来的链表到新的链表中,因为不能改变原来的链表。
        //(试过不把原来的链表复制出来,但提交时失败的。)
        ListNode node(-1), *tail(&node);
        while(head != nullptr){
            tail->next = new ListNode(head->val);
            head = head->next;
            tail = tail->next;
        } 
        head = node.next;
        
        ListNode *fast(head), *slow(head), *pre_slow(nullptr);
        while(fast->next != nullptr && fast->next->next != nullptr){
            fast = fast->next->next;
            pre_slow = slow;
            slow = slow->next;
        }
        TreeNode *root = new TreeNode(slow->val);
        ListNode *p(slow->next);
        delete slow;
        if(pre_slow != nullptr){
            pre_slow->next = nullptr;
            root->left = sortedListToBST(head);   
        }
        root->right = sortedListToBST(p);
        return root;
    }
};

## 软件功能详细介绍 1. **文本片段管理**:可以添加、编辑、删除常用文本片段,方便快速调用 2. **分组管理**:支持创建多个分组,不同类型的文本片段可以分类存储 3. **热键绑定**:为每个文本片段绑定自定义热键,实现一键粘贴 4. **窗口置顶**:支持窗口置顶功能,方便在其他应用程序上直接使用 5. **自动隐藏**:可以设置自动隐藏,减少桌面占用空间 6. **数据持久化**:所有配置和文本片段会自动保存,下次启动时自动加载 ## 软件使用技巧说明 1. **快速添加文本**:在文本输入框中输入内容后,点击"添加内容"按钮即可快速添加 2. **批量管理**:可以同时编辑多个文本片段,提高管理效率 3. **热键冲突处理**:如果设置的热键与系统或其他软件冲突,会自动提示 4. **分组切换**:使用分组按钮可以快速切换不同类别的文本片段 5. **文本格式化**:支持在文本片段中使用换行符和制表符等格式 ## 软件操作方法指南 1. **启动软件**:双击"大飞哥软件自习室——快捷粘贴工具.exe"文件即可启动 2. **添加文本片段**: - 在主界面的文本输入框中输入要保存的内容 - 点击"添加内容"按钮 - 在弹出的对话框中设置热键和分组 - 点击"确定"保存 3. **使用热键粘贴**: - 确保软件处于运行状态 - 在需要粘贴的位置按下设置的热键 - 文本片段会自动粘贴到当前位置 4. **编辑文本片段**: - 选中要编辑的文本片段 - 点击"编辑"按钮 - 修改内容或热键设置 - 点击"确定"保存修改 5. **删除文本片段**: - 选中要删除的文本片段 - 点击"删除"按钮 - 在确认对话框中点击"确定"即可删除
【Solution】 To convert a binary search tree into a sorted circular doubly linked list, we can use the following steps: 1. Inorder traversal of the binary search tree to get the elements in sorted order. 2. Create a doubly linked list and add the elements from the inorder traversal to it. 3. Make the list circular by connecting the head and tail nodes. 4. Return the head node of the circular doubly linked list. Here's the Python code for the solution: ``` class Node: def __init__(self, val): self.val = val self.prev = None self.next = None def tree_to_doubly_list(root): if not root: return None stack = [] cur = root head = None prev = None while cur or stack: while cur: stack.append(cur) cur = cur.left cur = stack.pop() if not head: head = cur if prev: prev.right = cur cur.left = prev prev = cur cur = cur.right head.left = prev prev.right = head return head ``` To verify the accuracy of the code, we can use the following test cases: ``` # Test case 1 # Input: [4,2,5,1,3] # Output: # Binary search tree: # 4 # / \ # 2 5 # / \ # 1 3 # Doubly linked list: 1 <-> 2 <-> 3 <-> 4 <-> 5 # Doubly linked list in reverse order: 5 <-> 4 <-> 3 <-> 2 <-> 1 root = Node(4) root.left = Node(2) root.right = Node(5) root.left.left = Node(1) root.left.right = Node(3) head = tree_to_doubly_list(root) print("Binary search tree:") print_tree(root) print("Doubly linked list:") print_list(head) print("Doubly linked list in reverse order:") print_list_reverse(head) # Test case 2 # Input: [2,1,3] # Output: # Binary search tree: # 2 # / \ # 1 3 # Doubly linked list: 1 <-> 2 <-> 3 # Doubly linked list in reverse order: 3 <-> 2 <-> 1 root = Node(2) root.left = Node(1) root.right = Node(3) head = tree_to_doubly_list(root) print("Binary search tree:") print_tree(root) print("Doubly linked list:") print_list(head) print("Doubly linked list in reverse order:") print_list_reverse(head) ``` The output of the test cases should match the expected output as commented in the code.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

懒行者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值