注意,本算法在条件接近临界值的时候,会导致后续大量的红包始终为最小值的情况,有待优化
推导
(下列涉及钱的部分均使用了单位分,这样能保证在计算过程中涉及的数字均为整数)
现有钱m分,要分成n份,每份最少a分,最多b分,求每次应该分的钱x
显然:
(1) an <= m <= bn
(2) a <= x <= b
当进行一次分配后
(3) a(n - 1) <= m - x <= b(n - 1)
上式中间只保留x可得
(4) m - bn + b <= x <= m - an + a
另由式(1)可得
m - bn + b <= b
m - an + a >= a
综上所述,x的取值范围应该是
(5) max(a, m - bn + b) <= x <= min(b, m - an + a)
证明
由于(1)(2)(4)式互为充要条件,故当n = 0时,m = 0
代码
/// <summary>
/// 红包算法1
/// </summary>
/// <param name="money">总钱数,单位为分</param>
/// <param name="count">份数</param>
/// <param name="min">每次分配最小值,单位为分</param>
/// <param name="max">每次分配最大值,单位为分</param>
/// <param name="random">随机数生成器,如果不传使用默认的</param>
/// <returns>每次应该分配的钱数</returns>
IEnumerable<int> LuckyMoneyAlgorithm1(int money, int count, int min, int max, Random random)
{
if (count <= 0)
throw new ArgumentOutOfRangeException("count");
if (max <= 0)
throw new ArgumentOutOfRangeException("max");
if (min < 0 || min > max)
throw new ArgumentOutOfRangeException("min");
if (money < min * count || money > max * count)
throw new ArgumentOutOfRangeException("money");
if (random == null)
random = new Random();
do
{
int min2 = Math.Max(min, money - max * count + max);
int max2 = Math.Min(max, money - min * count + min);
int dist = random.Next(min2, max2 + 1); //注意Random不能取到上限
yield return dist;
money -= dist;
}
while (--count > 0);
}