FactorialSystem (code jam china round2 300分真题) (第二轮淘汰赛)

介绍如何将十进制数转换为阶乘数系统表示,并提供具体示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Statement

    

In the factorial number system the value of the first digit (from the right) is 1!, the value of the second digit is 2!, ..., and the value of the n-th digit is n!. This means that any decimal number d can be written in this system as: anan-1...a2a1, where

d = an * n! + an-1 * (n-1)! + ... + a2 * 2! + a1 * 1! and 0 <= ai <= i for all i.

Given an int num in decimal, return its representation in the factorial number system.

 

Definition

    

Class:

FactorialSystem

Method:

convert

Parameters:

int

Returns:

int

Method signature:

int convert(int num)

(be sure your method is public)

Notes

-

n! = 1 * 2 * ... * n

 

Constraints

-

num will be between 1 and 3628799 (10!-1), inclusive.

 

Examples

0)

 

    

1

Returns: 1

 

1)

 

    

24

Returns: 1000

24 = 4!

2)

 

    

153

Returns: 11111

153 = 1! + 2! + 3! + 4! + 5!.

3)

 

    

133

Returns: 10201

 

4)

 

    

3628799

Returns: 987654321

Largest possible input.

 


 

This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.

From: http://www.blogjava.net/emu/category/2769.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值