spark的可以通过分区,调整任务的并行度,以减少分布式程序中,通信的代价。因此,控制数据的分布可以减少网络的传输,以提升性能。
本节主要从分区的角度,来说明spark的优化点。
业务场景:
如果开始时候业务的数据比较大,分区过多,但当经过一系列算子后(如filter等),造成大量的小分区数据,这样,由于分区过多导致线程开销过大,反而降低了应用的性能。
解决:
合理减少数据的分区,由于过滤后的数据变小,这样既减少线程的开销,同时,又满足单机的处理能力,从而提升性能。
可以调用repartion或coalesce重新分区。
源码翻译及解析:
/**
* Return a new RDD that is reduced into `numPartitions` partitions.
*
* This results in a narrow dependency, e.g. if you go from 1000 partitions
* to 100 partitions, there will not be a shuffle, instead each of the 100
* new partitions will claim 10 of the current partitions.
*
* However, if you're doing a drastic coalesce, e.g. to numPartitions = 1,
* this may result in your computation taking place on fewer nodes than
* you like (e.g. one node in the case of numPartitions = 1). To avoid this,
* you can pass shuffle = true. This will add a shuffle step, but means the
* current upstream partitions will be executed in parallel (per whatever
* the current partitioning is).
*
* Note: With shuffle = true, you can actually coalesce to a larger number
* of partitions. This is useful if you have a small number of partitions,
* say 100, potentially with a few partitions being abnormally large. Calling
* coalesce(1000, shuffle = true) will result in 1000 partitions with the
* data distributed using a hash partitioner.
*/
def coalesce(numPartitions: Int, shuffle: Boolean = false)(implicit ord: Ordering[T] = null)
: RDD[T] = withScope {
if (shuffle) {
/** Distributes elements evenly across output partitions, starting from a random partition. */
val distributePartition = (index: Int, items: Iterator[T]) => {
var position = (new Random(index)).nextInt(numPartitions)
items.map { t =>
// Note that the hash code of the key will just be the key itself. The HashPartitioner
// will mod it with the number of total partitions.
position = position + 1
(position, t)
}
} : Iterator[(Int, T)]
// include a shuffle step so that our upstream tasks are still distributed
new CoalescedRDD(
new ShuffledRDD[Int, T, T](mapPartitionsWithIndex(distributePartition),
new HashPartitioner(numPartitions)),
numPartitions).values
} else {
new CoalescedRDD(this, numPartitions)
}
}
def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
coalesce(numPartitions, shuffle = true)
}
由源码可以看出repartition就是调用coalesce,实际就是coalesce为shuffle的情况。关于coalesce,看参见稍后的文章