主成分分析(PCA)深入剖析+Matlab模拟

本文介绍了主成分分析(PCA)这一常见的降维技术。PCA通过将数据映射到新的坐标系来减少数据维度,新坐标轴的选择依据是原始数据的方差分布。文章详细讲解了PCA的具体步骤,并通过MATLAB实验进行了演示。

1.降维引发的思考

对于现在维数比较多的数据,我们首先需要做的就是对其进行降维操作。降维,简单来说就是说在尽量保证数据本质的前提下将数据中的维数降低。降维的操作可以理解为一种映射关系,例如函数z=f(x,y),即由原来的二维转换成了一维。处理降维的技术有很多种,如前面的SVD奇异值分解主成分分析(PCA)因子分析(FA)独立成分分析(ICA)等等。

2.PCA的主调与意图

PCA是一种较为常用的降维技术,PCA的思想是将n维特征映射到k维上,这k维是全新的正交特征。这k维特征称为主元,是重新构造出来的k维特征。在PCA中,数据从原来的坐标系转换到新的坐标系下,新的坐标系的选择与数据本身是密切相关的。其中,第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标轴选取的是与第一个坐标轴正交且具有最大方差的方向,依次类推,我们可以取到这样的k个坐标轴
PCA的操作流程符合我们在矩阵论中学习的那一套,大致如下:
1.去平均值,即每一位特征减去各自的平均值;
2.计算协方差矩阵;
3.计算协方差矩阵的特征值与特征向量;
4.对特征值从大到小排序(更多时候我们愿意叫他贡献度);
5.保留最大的k个特征向量;将数据转换到k个特征向量构建的新空间中。

3.MATLAB仿真实验

%% pca
dataSet = load('testSet.txt');%导入数据
% pca
[FinalData, reconData] = PCA(dataSet, 1);
%% 作图
hold on
plot(dataSet(:,1), dataSet(:,2), '.');
plot(reconData(:,1), reconData(:,2), '.r');
hold off

function [ FinalData,reconData ] = PCA( dataSet, k )
    [m,n] = size(dataSet);

   %% 去除平均值
    %取平均值
    dataSetMean = mean(dataSet);
    %减去平均值
    dataSetAdjust = zeros(m,n);
    for i = 1 : m
        dataSetAdjust(i , :) = dataSet(i , :) - dataSetMean;
    end

    %% 计算协方差矩阵
    dataCov = cov(dataSetAdjust);

    %% 计算协方差矩阵的特征值与特征向量
    [V, D] = eig(dataCov);
    
    % 将特征值矩阵转换成向量
    d = zeros(1, n);
    for i = 1:n
        d(1,i) = D(i,i);
    end
    
    %% 对特征值排序
    [maxD, index] = sort(d);
    
    %% 选取前k个最大的特征值
    % maxD_k = maxD(1, (n-k+1):n);
    index_k = index(1, (n-k+1):n);
    % 对应的特征向量
    V_k = zeros(n,k);
    for i = 1:k
        V_k(:,i) = V(:,index_k(1,i));
    end
    
    %% 转换到新的空间
    FinalData = dataSetAdjust*V_k;
    
    % 在原图中找到这些点
    reconData = FinalData * V_k';
    for i = 1 : m
        reconData(i , :) = reconData(i , :) + dataSetMean;
    end
end
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值