TensorFlow程序可以通过tf.device函数来指定运行每一个操作的设备。
这个设备可以是本地的CPU或者GPU,也可以是某一台远程的服务器。
TensorFlow会给每一个可用的设备一个名称,tf.device函数可以通过设备的名称,来指定执行运算的设备。比如CPU在TensorFlow中的名称为/cpu:0。
在默认情况下,即使机器有多个CPU,TensorFlow也不会区分它们,所有的CPU都使用/cpu:0作为名称。
–而一台机器上不同GPU的名称是不同的,第n个GPU在TensorFlow中的名称为/gpu:n。
–比如第一个GPU的名称为/gpu:0,第二个GPU名称为/gpu:1,以此类推。
–TensorFlow提供了一个快捷的方式,来查看运行每一个运算的设备。
–在生成会话时,可以通过设置log_device_placement参数来打印运行每一个运算的设备。
请看下面例子:
下面程序展示了log_device_placement参数的使用,在机器上直接运行代码:
–import tensorflowas tf
–a = tf.constant([1.0, 2.0, 3.0], shape=[3], name='a')
–b = tf.constant([1.0, 2.0, 3.0], shape=[3], name='b')
–c = a + b
–# 通过log_device_placement参数来输出运行每一个运算的设备。
–sess= tf.S
这个设备可以是本地的CPU或者GPU,也可以是某一台远程的服务器。
TensorFlow会给每一个可用的设备一个名称,tf.device函数可以通过设备的名称,来指定执行运算的设备。比如CPU在TensorFlow中的名称为/cpu:0。
在默认情况下,即使机器有多个CPU,TensorFlow也不会区分它们,所有的CPU都使用/cpu:0作为名称。
–而一台机器上不同GPU的名称是不同的,第n个GPU在TensorFlow中的名称为/gpu:n。
–比如第一个GPU的名称为/gpu:0,第二个GPU名称为/gpu:1,以此类推。
–TensorFlow提供了一个快捷的方式,来查看运行每一个运算的设备。
–在生成会话时,可以通过设置log_device_placement参数来打印运行每一个运算的设备。
请看下面例子:
下面程序展示了log_device_placement参数的使用,在机器上直接运行代码:
–import tensorflowas tf
–a = tf.constant([1.0, 2.0, 3.0], shape=[3], name='a')
–b = tf.constant([1.0, 2.0, 3.0], shape=[3], name='b')
–c = a + b
–# 通过log_device_placement参数来输出运行每一个运算的设备。
–sess= tf.S