动态规划实战2-leetcode 62.unique path

本文深入解析了机器人在网格中寻找从左上角到右下角的最短路径算法。通过动态规划方法,详细阐述了状态转移方程和边界条件,最终得出解决此类问题的有效策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

确定状态

最后一步:机器人无论用何种方式到达右下角,总有最后一步的挪动  --向右或者向下

假设机器人有x种方式走到(m-2,n-1),有y种方式走到(m-1,n-2)那么机器人有x+y种方式走到(m-1,n-1)

为什么?加法原理:无重复、无遗漏

dp[i][j]表示机器人走到第i行,第j列 

转移方程

dp[i][j]=dp[i-1][j]+dp[i][j-1]

初始条件和边界情况

dp[0][0]=1 dp[0][j]=1 dp[i][0]=1

计算顺序

f[0][0]=1

计算第0行

计算第m-1行 

代码

class Solution {
    public int uniquePaths(int m, int n) {
        int [][]dp = new int[m][n];
        dp[0][0]=1;
        
        for(int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                if(i==0||j==0){
                    dp[i][j]=1;
                }else{
                    dp[i][j]=dp[i-1][j]+dp[i][j-1];
                }
            }
        }
       return dp[m-1][n-1];
    }
     
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值