14-Oracle 23ai Vector Search 向量索引和混合索引-实操

一、Oracle 23ai支持的2种主要的向量索引类型:

1.1 内存中的邻居图向量索引 (In-Memory Neighbor Graph Vector Index)

HNSW(Hierarchical Navigable Small World :分层可导航小世界)索引 是 Oracle AI Vector Search 中唯一支持的内存邻居图向量索引类型。基于HNSW图算法,通过多层图结构加速搜索。

HNSW索引在23ai版本引入的新的内存结构:向量内存池(Vector Memory Pool)中创建;向量内存池(Vector Memory Pool)位于SGA中,Oracle通过 vector_memory_size参数控制这块内存的大小。Oracle 23 ai free目前的版本需要设置 vector_memory_size后,shutdown immediate ,startup

0. HNSW 索引原理详解
HNSW(Hierarchical Navigable Small World)是一种高效的高维向量近似最近邻搜索算法,其核心思想是通过构建多层图结构来加速相似性搜索。以下是其工作原理的深入解析:
1. 基础概念:小世界网络
  • ​核心特性​:任意两个节点可通过少量边连接(类似社交网络中的"六度空间"理论)
  • ​HNSW 创新点​:将小世界特性分层实现,形成可导航的层级结构
  • 2. 多层图结构构建
    HNSW 构建一个由多层组成的图(Layer 0 到 Layer L):
    ​层级特性​:
    • ​高层​(Layer L):节点稀少,长距离连接(快速导航)
    • ​底层​(Layer 0):包含所有节点,密集连接(精确搜索)
    • ​节点进入规则​:随机分配层级(概率随层级升高指数下降)

3. 搜索流程(查询向量 Q)​​
​顶层导航​(粗粒度):
  • 从最高层随机节点开始
  • 沿"长距离边"快速跳转到目标区域
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值