【第14章:神经符号集成与可解释AI—14.2 可解释AI技术:LIME、SHAP等的实现与应用案例】

在这里插入图片描述

凌晨三点的ICU病房,值班医生李主任盯着AI辅助诊断系统的红色警报——这套准确率高达95%的深度学习系统,突然建议对一位肾衰竭患者进行肝移植手术。正当医疗组陷入混乱时,李主任打开了系统的"解释模式",屏幕上立即跳出SHAP分析图:模型误将CT影像中的手术缝合金属钉识别为肝硬化结节!这个生死攸关的误诊事件,揭开了可解释AI技术最惊心动魄的应用场景。


一、可解释性技术的"手术刀":LIME与SHAP原理大拆解

1.1 LIME:给AI安装"显微镜"

核心原理:在局部邻域构建可解释的代理模型,就像用放大镜观察模型在某个预测点附近的行为

# 以图像分类为例的LIME实现流程
import lime
from lime import lime_image

# 创建解释器
explainer 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

再见孙悟空_

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值