决策树——实践

# -*- coding: utf-8 -*-
"""
Created on Tue Sep 08 10:10:15 2015

@author: Administrator
"""

import operator   #为了能够处理叶子节点的类标签仍然不唯一的情况。
from math import log

#计算训练数据集的香农熵
def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    for featVec in dataSet:
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0   #这里不能为1,因为后一语句是一定执行的。
        labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob, 2)
    return shannonEnt

#创建训练数据集
def createDataSet():
    dataSet = [[1, 1, 'yes'], 
               [1, 1, 'yes'], 
               [1, 0, 'no'], 
               [0, 1, 'no'], 
               [0, 1, 'no']]
    labels = ['no surfacing', 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值