– Start
import numpy as np
import pandas as pd
from datetime import datetime
pd.set_option('display.max_columns', 100)
pd.set_option('display.max_rows', 100)
pd.set_option('display.width', 1000)
# 通过读取 Excel 文件创建 DataFrame
df = pd.read_excel("index300.xls", sheet_name="Price Return Index", index_col=0)
print(df)
# 行转列
print(df.T)
# 根据行标签排序
print(df.sort_index(axis=0, ascending=True))
# 根据列标签排序
print(df.sort_index(axis=1))
# 根据某列的值排序
print(df.sort_values(by='开盘Open'))
# 生成新列
df['单位成交额'] = df['成交金额(元)Turnover'] / df['成交量(股)Volume(share)']
print(df)
# 删除列
df.drop('单位成交额', axis=1, inplace=True)
print(df)
# 修改值
df.at[datetime(2021, 6, 16, 0, 0, 0), '收盘Close'] = 5077
print(df)
df.iat[0, 8] = 5078
print(df)
df.loc[datetime(2021, 6, 16, 0, 0, 0):datetime(2021, 6, 15, 0, 0, 0), '收盘Close'] = [5078, 5078]
print(df)
# 统计列
column_open = df['开盘Open']
# print(column_open.unique())
# print(column_open.nunique())
# print(column_open.value_counts())
# print(column_open.mean())
# print(column_open.max())
# print(column_open.min())
# print(column_open.count())
# print(column_open.apply(lambda x: x*2))
# print(df.loc[column_open.idxmax()])
# print(df.loc[column_open.idxmin()])
# 字符串方法
# print(df['指数英文全称Index English Name(Full)'].str.lower())
# 判断 null
print(df.isnull())
– 更多参见:Pandas 精萃
– 声 明:转载请注明出处
– Last Updated on 2021-06-21
– Written by ShangBo on 2018-11-10
– End