
Matplotlib
shangboerds
淡薄以明志,宁静而致远
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Matplotlib 面向对象编程风格(多图表)
– Startimport numpy as npimport matplotlib.pyplot as plt# 显示中文标签plt.rcParams['font.sans-serif'] = ['SimHei']plt.rcParams['axes.unicode_minus'] = Falsex = np.array([1, 2, 3, 4])y = x * 2# 面向对象编程风格 -- 多图表fig = plt.figure()axes = fig.add_axes([0原创 2021-01-15 16:32:47 · 700 阅读 · 0 评论 -
Matplotlib 面向对象编程
– Startimport numpy as npimport matplotlib.pyplot as plt# 显示中文标签plt.rcParams['font.sans-serif'] = ['SimHei']plt.rcParams['axes.unicode_minus'] = Falsex = np.array([1, 2, 3, 4])y = x * 2# 面向对象编程风格# 创建图形fig = plt.figure()# 添加坐标轴# 坐标轴位置和大小 (le原创 2021-01-15 16:31:15 · 1005 阅读 · 0 评论 -
Matplotlib 动画
– Startimport numpy as npimport matplotlibimport matplotlib.pyplot as pltfrom matplotlib.animation import FuncAnimationmatplotlib.rcParams['toolbar'] = 'None'fig = plt.figure(figsize=(8, 6), dpi=100)def first_frame(): plt.scatter(0, 0)def n原创 2021-01-15 16:03:07 · 284 阅读 · 0 评论 -
Matplotlib 生成 3D 图形
– Startimport numpy as npimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3Dfig = plt.figure()ax = Axes3D(fig)X = np.arange(-4, 4, 0.25)Y = np.arange(-4, 4, 0.25)X, Y = np.meshgrid(X, Y)R = np.sqrt(X**2 + Y**2)Z = np.sin(R)原创 2021-01-15 16:01:18 · 634 阅读 · 0 评论 -
Matplotlib 极坐标(Polar coordinates)
– Startimport numpy as npimport matplotlib.pyplot as plt# 极坐标ax = plt.axes(polar=True)#r = np.arange(0, 6, 0.01)theta = 2 * np.pi * rax.plot(theta,r)# x 轴是 thetaax.set_xticks(np.arange(0, 2*np.pi, np.pi/6))# y 轴是 rax.set_ylim(0, 4)ax.set_y原创 2021-01-14 08:10:38 · 1657 阅读 · 0 评论 -
Matplotlib 矢量场(quiver)
– Startimport numpy as npimport matplotlib.pyplot as pltn = 8# 二维网格坐标X, Y = np.mgrid[0:n, 0:n]# U,V 定义方向U = X + 1V = Y + 1# C 定义颜色C = X + Yplt.quiver(X, Y, U, V, C)plt.show()– 更多参见:Matplotlib 精萃– 声 明:转载请注明出处– Last Updated on 2021-01-原创 2021-01-14 08:09:11 · 2739 阅读 · 0 评论 -
Matplotlib 生成图片(imshow)
– Startimport numpy as npfrom random import randomimport matplotlib.pyplot as plt# https://matplotlib.org/gallery/images_contours_and_fields/interpolation_methods.html#sphx-glr-gallery-images-contours-and-fields-interpolation-methods-pydata = np.arra原创 2021-01-14 08:07:47 · 1234 阅读 · 0 评论 -
Matplotlib 等高线(contour)
– Startimport numpy as npimport matplotlib.pyplot as plt# 根据 x y 坐标返回 z 坐标def z(x,y): return (1 - x / 2 + x ** 5 + y ** 3) * np.exp(-x ** 2 - y ** 2)n = 256x = np.linspace(-3, 3, n)y = np.linspace(-3, 3, n)# 二维网格坐标X, Y = np.meshgrid(x, y)Z原创 2021-01-14 08:05:05 · 1065 阅读 · 1 评论 -
Matplotlib 盒须图 (Box-and-whisker plot)
– Startimport numpy as npimport matplotlib.pyplot as pltfrom random import sampledata = np.random.normal(0, 1, 100)# 盒须图plt.boxplot(data, vert=False);plt.show()– 更多参见:Matplotlib 精萃– 声 明:转载请注明出处– Last Updated on 2021-01-13– Written by ShangB原创 2021-01-14 07:43:53 · 981 阅读 · 0 评论 -
Matplotlib 饼图(Pie graph)
– Startimport numpy as npimport matplotlib.pyplot as plt# 显示中文标签plt.rcParams['font.sans-serif'] = ['SimHei']plt.rcParams['axes.unicode_minus'] = False# 饼图Z = np.array([0.3, 0.3, 0.3, 0.1])plt.pie(Z, labels=['房贷', '日常开支', '孩子', '其他'])plt.show()原创 2021-01-13 10:28:18 · 604 阅读 · 1 评论 -
Matplotlib 柱状图 (Bar graph)
– Startimport numpy as npimport matplotlib.pyplot as pltx = np.array([3, 4, 5, 6])y = np.array([88, 90, 95, 99])# 柱状图plt.bar(x, y, facecolor='#ff9999', edgecolor='white')plt.xticks(np.arange(0, 11, 1))plt.show()– 更多参见:Matplotlib 精萃– 声 明:转载请注原创 2021-01-13 09:42:45 · 966 阅读 · 0 评论 -
Matplotlib 直方图(Histogram graph)
– Startimport numpy as npfrom random import randintimport matplotlib.pyplot as plt# 直方图data = np.array([randint(1, 100) for i in range(1000)])plt.hist(data, facecolor='blue', edgecolor='white')plt.xticks(np.arange(0, 101, 10))plt.show()– 更多参见:原创 2021-01-13 09:41:08 · 999 阅读 · 0 评论 -
Matplotlib 注释(Annotate)
– Startimport numpy as npimport matplotlib.pyplot as plt# 创建坐标系ax = plt.subplot(1, 1, 1)# 设置坐标轴位置ax.spines['right'].set_color('none')ax.spines['top'].set_color('none')ax.spines['bottom'].set_position(('data', 0))ax.spines['left'].set_position(('原创 2021-01-13 09:39:15 · 1009 阅读 · 0 评论 -
Matplotlib 散点图(scatter)
– Startimport numpy as npimport matplotlib.pyplot as pltx = np.arange(1, 100, 3)y = x ** 2# 散点图plt.scatter(x, y)plt.show()– 更多参见:Matplotlib 精萃– 声 明:转载请注明出处– Last Updated on 2021-01-13– Written by ShangBo on 2021-01-13– End...原创 2021-01-13 09:26:59 · 645 阅读 · 0 评论 -
Matplotlib 自定义网格(Grid)
– Startimport numpy as npimport matplotlib.pyplot as pltx = np.array([1, 2, 3, 4])y = x * 2plt.plot(x, y)# 自定义网格# https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib-lines-line2dplt.grid(True, color='r', linestyle='-', line原创 2021-01-13 09:25:11 · 1901 阅读 · 0 评论 -
Matplotlib 自定义线
– Startimport numpy as npimport matplotlib.pyplot as plt# 显示中文标签plt.rcParams['font.sans-serif'] = ['SimHei']plt.rcParams['axes.unicode_minus'] = Falsex = np.array([3, 4, 5, 6])y = np.array([30, 50, 75, 99])# 设置线属性# https://matplotlib.org/api/_a原创 2021-01-13 09:23:18 · 359 阅读 · 0 评论 -
Matplotlib 添加图例(Legend)
– Startimport numpy as npimport matplotlib.pyplot as plt# 显示中文标签# https://matplotlib.org/tutorials/introductory/customizing.htmlplt.rcParams['font.sans-serif'] = ['SimHei']plt.rcParams['axes.unicode_minus'] = Falsex = np.arange(1, 100, 1)y1 = x *原创 2021-01-13 08:20:55 · 5846 阅读 · 0 评论 -
Matplotlib 自定义坐标轴2(Spine)
– Startimport numpy as npimport matplotlib.pyplot as plt# 创建坐标系ax = plt.subplot(1, 1, 1)# 设置坐标轴位置# https://matplotlib.org/api/spines_api.html#module-matplotlib.spinesax.spines['right'].set_color('none')ax.spines['top'].set_color('none')ax.spines原创 2021-01-13 08:19:08 · 650 阅读 · 0 评论 -
Matplotlib 自定义坐标轴(Axes)
– Startimport numpy as npimport matplotlib.pyplot as plt# 显示中文标签plt.rcParams['font.sans-serif'] = ['SimHei']plt.rcParams['axes.unicode_minus'] = Falsex = np.array([3, 4, 5, 6])y = np.array([50, 70, 75, 90])plt.plot(x, y)# 设置标题plt.title('成绩统计表'原创 2021-01-13 08:16:29 · 9491 阅读 · 0 评论 -
Matplotlib 多个图表(subplot)
– Startimport numpy as npimport matplotlib.pyplot as pltx = np.array([1, 2, 3, 4])y = x * 2# 一个图形中包含多个图表# plt.subplot(nrows, ncols, plot_number)plt.subplot(2, 2, 1)plt.plot(x, y)plt.subplot(2, 2, 2)plt.plot(x, y)plt.subplot(2, 2, 3)plt.plot原创 2021-01-12 15:42:17 · 816 阅读 · 1 评论 -
Matplotlib 自定义图形(Figure)
– Startimport numpy as npimport matplotlib.pyplot as pltx = np.array([1, 2, 3, 4])y = x * 2# Figure 可以理解成一个图形# dpi 设置分辨率,dots-per-inch# figsize 设置宽和高fig = plt.figure(figsize=(8, 6), dpi=100)plt.plot(x, y)# 保存图形fig.savefig("test.png")plt.sh原创 2021-01-12 15:02:42 · 537 阅读 · 0 评论 -
Matplotlib 同时提供 x 和 y 值
– Startimport numpy as npimport matplotlib.pyplot as pltx = np.array([1, 2, 3, 4])y = x * 2# 同时提供 x 和 y 值# https://matplotlib.org/tutorials/introductory/pyplot.html# https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plotplt.plot(x, y)原创 2021-01-12 14:35:49 · 496 阅读 · 0 评论 -
Matplotlib 一个最简单的例子
– Startimport numpy as npimport matplotlib.pyplot as plt# data 被认为是 y 值# 自动提供 x 值,x 默认值是从 0开始 [0, 1, 2, 3]data = np.array([1, 2, 3, 4])plt.plot(data)plt.show()– 更多参见:Matplotlib 精萃– 声 明:转载请注明出处– Last Updated on 2021-01-12– Written by ShangBo原创 2021-01-12 14:30:36 · 237 阅读 · 0 评论 -
什么是 Matplotlib
– StartMatplotlib 是 Python 的一个外部模块,提供了绘图功能,它最初的目的是模仿 MatLab,所以 Matplotlib 提供了两种接口制作图形,一种是面向对象编程,一种是类似 MatLab 的接口 pyplot。– 更多参见:Matplotlib 精萃– 声 明:转载请注明出处– Last Updated on 2021-01-12– Written by ShangBo on 2021-01-12– End...原创 2021-01-12 14:24:40 · 1548 阅读 · 0 评论 -
Matplotlib 精萃
– Start– 更多参见:Python 精萃– 声 明:转载请注明出处– Last Updated on 2021-01-12– Written by ShangBo on 2021-01-12– End原创 2021-01-12 13:44:09 · 754 阅读 · 0 评论