POJ 3680(费用流)

本文介绍了一种解决最短费用流问题的具体实现方法。通过使用SPFA算法进行寻路,实现了从源点到汇点的最小费用最大流。文中详细展示了如何构建图模型,并通过代码示例解释了关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:

        见《挑战》P246.

直接套用模板即可:

 

//标号法,设立一个标号数组h[MAXN]
#include<iostream>
#include<cstring>
#include<algorithm>
#include<deque>
#include<cstdio>
#include<vector>
using namespace std;

const int MAXN = 510;
const int MAXM = 51010;
const int INF = 0x3f3f3f3f;

struct Edge
{
	int from, to, cap, next, cost;
};

Edge edge[MAXM];
int head[MAXN];
int h[MAXN];
int preve[MAXN];
int prevv[MAXN];
int dist[MAXN];
int a[MAXN], b[MAXN], c[MAXN];
int src, des, cnt;

void addedge( int from, int to, int cap, int cost )
{
	edge[cnt].from = from;
	edge[cnt].to = to;
	edge[cnt].cap = cap;
	edge[cnt].cost = cost;
	edge[cnt].next = head[from];
	head[from] = cnt++;

	swap( from, to );

	edge[cnt].from = from;
	edge[cnt].to = to;
	edge[cnt].cap = 0;
	edge[cnt].cost = -cost;
	edge[cnt].next = head[from];
	head[from] = cnt++;
}

int SPFA()
{
	deque<int> dq;
	int inqueue[MAXN];
	memset( dist, INF, sizeof dist );
	memset( inqueue, 0, sizeof inqueue );

	inqueue[src] = 1;
	dist[src] = 0;
	dq.push_back( src );

	while(!dq.empty())
	{
		int u = dq.front();
		dq.pop_front();
		inqueue[u] = 0;

		for(int i = head[u]; i != -1; i = edge[i].next)
		{
			int v = edge[i].to;
			if(edge[i].cap&&dist[v] > dist[u] + edge[i].cost)
			{
				dist[v] = dist[u] + edge[i].cost;
				prevv[v] = u;
				preve[v] = i;
				if(!inqueue[v])
				{

					if(!dq.empty() && dist[v] <= dist[dq.front()])
						dq.push_front( v );
					else
						dq.push_back( v );
				}
			}
		}
	}
	return 0;
}

int min_cost_flow(int f)
{
	memset( h, 0, sizeof h );
	int cost=0;
	while(f > 0)
	{
		SPFA();
		if(dist[des] == INF)
			return -1;
		for(int i = 0; i < MAXN; i++)
			h[i] += dist[i];

		int d = f;
		for(int i = des; i != src; i = prevv[i])
		{
			d = min( d, edge[preve[i]].cap );

		}

		f -= d;
		cost += d*dist[des];

		for(int i = des; i != src; i = prevv[i])
		{
			edge[preve[i]].cap -= d;
			edge[preve[i] ^ 1].cap += d;
		}
	}
	return cost;
}

int main()
{
	int n, k;
	src = 0;
	des = 505;
	int kase;
	cin >> kase;
	while(kase--)
	{
		memset( head, -1, sizeof head );
		cnt = 0;
		cin >> n >> k;
		vector<int> x;

		for(int i = 1; i <= n; i++)
		{
			cin >> a[i] >> b[i]>>c[i];
			x.push_back( a[i] );
			x.push_back( b[i] );
		}
		sort( x.begin(), x.end() );
		x.erase( unique( x.begin(), x.end() ), x.end() );
		//unique将重复元素放到最后并返回第一个重复元素的iterator

		int m = x.size();
		int res = 0;

		addedge( src, 1, k, 0 );
		addedge( m, des, k, 0 );

		for(int i = 1; i < m; i++)
		{
			addedge( i, i + 1, INF, 0 );
		}

		for(int i = 1; i <= n; i++)
		{
			int u = find( x.begin(), x.end(), a[i] ) - x.begin();
			int v = find( x.begin(), x.end(), b[i] ) - x.begin();
			u++; v++;

			addedge( u, v, 1, -c[i] );
			//addedge( src, v, 1, 0 );
			//addedge( u, des, 1, 0 );
			//res += (-c[i]);
		}

		res = min_cost_flow( k );
		//res += min_cost_flow( k );
		cout << -res << endl;
	}
	return 0;
}

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值