机器学习泛化误差

泛化误差

定义

机器学习算法的最终目标是最小化期望损失风险,由于数据的真实分布通常是不知道的,因此,将学习目标转换为最小化经验风险:
ming∈Gl^n(g)=1n∑i=1nl(g;xi,yi)min_{g\in\mathcal{G}}\hat{l}_n(g)=\frac{1}{n}\sum_{i=1}^{n}l(g;x_i,y_i)mingGl^n(g)=n1i=1nl(g;xi,yi)

优化算法对最小化经验风险函数求解,并在算法结束的第TTT次迭代中输出模型g^T\hat{g}_Tg^T。我们希望学习到的模型g^T\hat{g}_T

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值